

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MECHANICAL TECHNOLOGY: AUTOMOTIVE

2019

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 13 pages.

Copyright reserved

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	B✓		(1)
1.2	B✓		(1)
1.3	A✓		(1)
1.4	A✓		(1)
1.5	D✓		(1)
1.6	B✓		(1) [6]
QUEST	ION 2: SAFETY (GENERIC)		
2.1	 Angle grinder: Do not use excessive force while grinding ✓ Ensure that the sparks do not endanger co-workers ✓ Keep hands clear from grinding disc ✓ Maintain a firm grip on the angle grinder ✓ 		
		(Any 2 x 1)	(2)
2.2	 Welding goggles: To protect your eyes from the spatter ✓ To protect your eyes from the harmful rays ✓ To ensure proper vision of the process ✓ 	(Any 2 x 1)	(2)

2.3 **PPE – Bench grinder:**

- Overall ✓
- Safety goggles ✓
- Safety shoes ✓

(Any 2 x 1) (2)

(2)

2.4 **Process and product workshop layout:**

- The product layout ensures that the machines are arranged in the sequence of the manufacturing process of a product. ✓
- The process layout is based on the type of manufacturing process needed in the making of the product. ✓

2.5 **Employer's responsibility – equipment:**

- They must provide and maintain equipment ✓
- Ensure that the equipment is safe to use by employees ✓
- Provide safe storage for equipment ✓
- Provide proper training of employees in the use of the equipment \checkmark
- Enforce safety measures ✓

QUESTION 3: MATERIALS (GENERIC)

3.1	Tests • •	 to distinguish between metals: Bending test: ✓ hit with hammer✓ Filing test ✓ file material(colour and ease) ✓ Machining test ✓ machine material (type of shaving, ease and colour) ✓ Sound ✓ drop on floor(high or low frequency) ✓ 	(8)
3.2	Heat-	treatment:	
	3.2.1	 Tempering: After hardening, the steel must be tempered To relieve ✓ the strains ✓ induced. To reduce ✓ brittleness. ✓ 	(2)
	3.2.2	 Normalising: To relieve ✓ the internal stresses ✓ produced by forging and machining. 	(2)
	3.2.3	 Hardening: To produce extremely hard steel ✓ to enable it to resist wear and tear ✓ or to use as cutting tools. 	(2) [14]
QUEST	ION 4:	MULTIPLE-CHOICE (SPECIFIC)	
4.1	D√		(1)
4.2	A✓		(1)
4.3	C√		(1)
4.4	C√		(1)
4.5	B√		(1)
4.6	B√		(1)
4.7	A✓		(1)
4.8	C√		(1)
4.9	B√		(1)
4.10	B√		(1)
4.11	C√		(1)
4.12	B√		(1)
4.13	A✓		(1)
4.14	D√		(1) [14]

3

QUESTION 5: TOOLS AND EQUIPMENT (SPECIFIC)

5.1 Compression t	test:
-------------------	-------

	5.1.1	 Wet test ✓ Dry test ✓ 	(2)
	5.1.2	 Reasons for low compression: Worn cylinders ✓ Worn piston rings ✓ Worn piston ✓ Leaking inlet valve ✓ Leaking exhaust valve ✓ Leaking cylinder head gasket ✓ 	(2)
5.2	A small	nbalance: mass or weight ✓ is applied to the wheel rim diametrically opposite /y spot until the wheel is in balance. ✓	(2)
5.3	Cylinde	r leakage tester:	
	5.3.1	 Components of cylinder leakage tester: A. Spark plug adapter / connector ✓ B. Meter / gauge ✓ C. Flexible air hose ✓ D. Compressed air coupling ✓ E. Control valve / knob ✓ 	(5)
	5.3.2	 Cylinder leakage test reasons: Loss in power. ✓ Low compression. ✓ To determine if the cylinder head gasket has blown. ✓ Oil consumption due to excessive leakage past the oil piston rings. ✓ To identify leaking valves as a cause of excessive smoking.✓ 	(2)
5.4		s for a high CO reading: ncorrect idle speed ✓	

- Clogged air filter ✓
- Faulty choke ✓
- Faulty injectors ✓

(Any 2 x 1) (2)

4

DBE/2019

Wheel a	ignment gauge:	
5.5.1	Bubble gauge ✓	(1)
5.5.2	 Caster reading: Turn the front of the wheel 20° inwards. ✓ Zero the castor scale. ✓ Turn the wheel through 40° in the opposite direction.✓ Take the reading on the castor scale. ✓ Do the same for the other wheel. ✓ 	(5)
• Th • Th	tic scanner: the vehicle identification number (VIN). ✓ the make and the model of the vehicle. ✓ the engine type. ✓ (Any 2 x 1)	(2) [23]

5.5

5.6

QUESTION 6: ENGINES (SPECIFIC)

6.1 Balancing of engine

6.1.1 **Engine crankshaft:**

- Static balance ✓
 - Dynamic balance ✓ (2)

6.1.2 Methods to balance a crankshaft:

- Static balance: By fitting balance mass pieces to the crank webs or by removing metal from the crank webs. ✓
- Dynamic balance: Vibration is reduced by removing metal from certain parts or from parts of the crank webs. ✓

(2)

(2)

(2)

(4)

6.1.3 **Factors that cause vibration:**

- Mechanical unbalance caused by unbalanced moving parts. ✓
- Power unbalancing caused by uneven pressure on the pistons and crankshaft. ✓
- The crankshaft and flywheel assembly is not statically balanced. ✓
- The crankshaft and flywheel is not dynamically balanced. ✓

(Any 2 x 1)	(2)
-------------	-----

(Any 2 x 1)

6.2 **Firing order factors:**

- The position of the cranks on the crankshaft. \checkmark
- The arrangement of the cams on the camshaft. ✓
- The number of cylinders. ✓

6.3 Vibration damper:

It is a mass fitted to the crankshaft \checkmark on the opposite side of the flywheel to counteract the torsional vibration of the crankshaft. \checkmark

6.4 **Supercharger:**

6.4.1	Type of supercharger: Centrifugal type ✓	
6.4.2	Supercharger parts:	

- A. Air inlet port ✓
 - B. Air outlet port \checkmark
 - C. Rotor (impeller) ✓
 - D. Vane (fins) ✓

6.6

6.8

6.5 Advantages of engine with supercharger:

- More power is developed compared to a similar engine without a supercharger. ✓
- An engine with a supercharger is more economical per given kilowatt output. 🗸
- Less fuel is used compared to engine mass. ✓
- Power loss above sea level is eliminated. \checkmark
- Operation of the turbocharger: • The exhaust gases from the engine are routed to the turbine wheel
 - to enable the turbine wheel to spin at a very high speed. \checkmark
 - The gases are then channelled out of the housing and wheel assembly into the normal exhaust system. \checkmark
 - As the turbine wheel spins, it turns a common shaft, which in turn spins the compressor wheel. ✓
 - The compressor draws air in through the compressor inlet. ✓
 - It delivers the compressed air through the outlet and the induction port then into the cylinders. \checkmark
 - This boosted pressure delivered to the cylinders increases the volumetric efficiency of the engine. \checkmark
 - Then it also increases the engine's performance. \checkmark •

6.7 Turbo charger disadvantage against a super charger:

- Require lubrication. ✓
- Suffers from lag. ✓

High altitude:

• Tend to heat the air, reducing density. ✓

performance will be weaker than at sea level. \checkmark

Needs to be controlled from over-revving by the waste gate. ✓

At high altitude less oxygen is available for combustion \checkmark and therefore the

- Some turbochargers require a special shut-down procedure before the ignition can be switched off. \checkmark
- More expensive to install. \checkmark

(7)

(2)

(Any 2 x 1) (2)

(Any 2 x 1)

(2)[28]

DBE/2019

(2)

QUESTION 7: FORCES (SPECIFIC)

7.1 **Compression Ratio**

Is the ratio between the total volume of a cylinder when the piston is at bottom dead centre \checkmark to the volume of the charge in a cylinder when the piston is at top dead centre. \checkmark

7.2 **Compression ratio calculations:**

7.2.1
Swept Volume =
$$\frac{\pi D^2}{4} \times L$$
 \checkmark
= $\frac{\pi (8,4)^2}{4} \times 9,0$ \checkmark
= 498,76 cm³ \checkmark (3)

7.2.2 Compression Ratio =
$$\frac{SV + CV}{CV}$$

 $CV = \frac{SV}{CR - 1}$
 $= \frac{498,76}{8,5 - 1}$
 $= \frac{498,76}{7,5}$
 $= 66,50 \text{ cm}^3$ (3)

7.2.3 **New bore diameter:**

Compression Ratio =
$$\frac{SV}{CV} + 1$$

9,5-1= $\frac{SV}{66,50}$
 $\frac{\pi D^2}{4} \times L = 66,50 \times 8,5$
 $D^2 = \frac{66,50 \times 8,5 \times 4}{\pi \times 9}$
= 79,97 cm³
 $D = \sqrt{79,97}$
= 8,94 cm
= 89,4 mm

(6)

7.3 **Power calculations**

7.3.1 Force = (125 × 10)
=1250 N
$$\checkmark$$

Torque = Force × radius \checkmark
=1250 × 0,3
= 375 Nm \checkmark (3)
7.3.2 Indicated Power = P×L×A ×N×n
P=950KPa \checkmark
 $L = \frac{140}{1000}$
= 0,14m \checkmark
 $A = \frac{\pi D^2}{4} \checkmark$
 $= \frac{\pi 0,12^2}{4}$
= 11,31×10⁻³ m \checkmark
 $N = \frac{2400}{60 \times 2} \checkmark$
= 20 power strokes/sec \checkmark
n = 4 cylinders
Indicated Power = P×L×A ×N×n \checkmark
=950×0,14×11,31×10⁻³ × 20×4 \checkmark
=120,34 kW \checkmark (9)
7.3.3 Brake Power = 2 π ×N×T \checkmark
=94247,78 W
=94,25 kW \checkmark (3)
7.3.4 Mechanical Efficiency = $\frac{BP}{IP}$ × 100% \checkmark

=78,32 %

 \checkmark

10

DBE/2019

SC/NSC – Marking Guidelines

QUESTION 8: MAINTENANCE (SPECIFIC)

8.1	• (Soure test - Manufacturers' specification: Dil pressure at engine idle speed. \checkmark Dil pressure when the engine is cold. \checkmark Dil pressure when the engine is hot. \checkmark Dil pressure on high revolutions. \checkmark	
		(Any 3 x 1)	(3)
8.2	• [at pressure test: Determine if the catalytic converter is blocked. ✓ Determine if silencer is blocked. ✓	(2)
8.3	• • g • T t	for cap test: Install the cap on the cooling system pressure tester. \checkmark Increase the pressure in the tester while watching the pressure gauge. \checkmark The pressure cap should release air at a rated pressure stamped on the cap. \checkmark Cap should hold pressure for at least one minute. \checkmark	(4)
8.4	obtaine • F • F • F	essure test – manufacturers' specifications need to be ed: Fuel pressure before fuel pump. ✓ Fuel pressure before the carburettor. ✓ Fuel pressure at idle speed. ✓ Fuel pressure at high revolutions. ✓	(4)
8.5	Compre	ession test:	
	8.5.1	High tension lead: The ignition system will be disabled \checkmark to prevent electrical shock. \checkmark	(2)
	8.5.2	Fuel injectors disconnected: To prevent unburned fuel entering the exhaust system ✓ and from entering the tester. ✓	(2)
	8.5.3	Throttle valve fully open: To obtain the correct amount of air entering the cylinder ✓ and to obtain a correct reading. ✓	(2)
	8.5.4	Recording the readings: The reading obtained during the compression test can be compared to the specification reading \checkmark to check if the pressure is correct or not. \checkmark	(2)
8.6	• A • (a t-procedure: Add oil to that cylinder which has a low reading. ✓ Carry out compression test as for dry test, if the reading increases it Indicates that the piston rings are worn. ✓	(2)

[23j

QUESTION 9: SYSTEMS AND CONTROL (AUTOMATIC GEARBOX) (SPECIFIC)

9.1		s of cooling the automatic transmission:	
		y using a special oil cooler alongside the engine cooling radiator	
		nd circulating transmission fluid through it. \checkmark	$\langle 0 \rangle$
	• C	irculating transmission fluid through the bottom radiator tank. \checkmark	(2)
9.2	• It • G	ages of automatic transmission: reduces driving fatigue. ✓ reater reduction of wheel spin under bad road conditions. ✓	
		he vehicle can be stopped suddenly without the engine stalling. ✓	
	•	he system dampers all engine torsional vibrations. ✓ (Any 2 x 1)	(2)
9.3	•	e of automatic gearbox:	
	l o reliev	ve the driver of clutch \checkmark and gear shift operation \checkmark	(2)
9.4		tio on torque:	
	•	her the gear ratio the lower the torque transferred \checkmark and the lower ratio the higher the torque transferred. \checkmark	(2)
9.5	Advanta	ages of torque converter:	
		orque increases automatically. ✓	
		Smooth transfer of torque. ✓ /inimum servicing is required. ✓	
	U IV	(Any 2 x 1)	(2)
0.0	A 4		
9.6	Automa	tic gearbox:	
	9.6.1	Brake Band ✓	(1)
	9.6.2	Brake band labels: A. Lever shaft ✓ B. Lever ✓	
		C. Strut ✓ D. Brake band ✓	
		E. Anchor ✓	
		F. Band adjuster ✓	(6)
	9.6.3	Brake bands function:	
		To enable the annulus to come into a stationary position to change to another ratio. \checkmark	(1)
			[18]

QUESTION 10: SYSTEMS AND CONTROL (AXLES, STEERING GEOMETRY AND ELECTRONICS) (SPECIFIC)

10.1 **Preliminary wheel alignment check:**

- Kerb mass against the manufacturers specifications. ✓
- Uneven wear on the tyres. ✓
- Tyre pressure. ✓
- Run-out on the wheels. \checkmark
- Correct preload on the wheel bearings. ✓
- Kingpins and bushes. ✓
- Suspension ball joints for wear, locking and lifting. ✓
- Suspension bushes for excessive free movement. ✓
- Steering box play and whether secure on chassis. ✓
- Tie-rod ends. ✓
- Sagged springs, which include riding height. ✓
- Ineffective shock absorbers. ✓.
- Spring U-bolts. ✓
- Chassis for possible cracks and loose cross-members. ✓

(Any 5 x 1) (5)

(2)

(1)

(2)

10.2 **Toe-out on turns:** This toe-out effect in a turn gives a true rolling motion to the front wheels ✓ in a corner without scuffing. ✓

10.3 **Dynamic balance of the wheel and tyre assembly:**

Dynamic balance of the wheel and tyre assembly refers to the equal distribution of all weights around the axis of rotation in all rotation parts. \checkmark

10.4 **Reasons of the speed control system:**

- The speed control system is to control the throttle opening electronically. ✓
- To keep the vehicle speed constant. ✓

10.5 **Disadvantages of the speed control:**

- The system is expensive. \checkmark
- High maintenance costs if the system becomes faulty. ✓ (2)

10.6 Diode:

The function of the diode is to permit current to flow in only one direction \checkmark and to block it from flowing in the opposite direction. \checkmark (2)

10.7 Advantages of an electric fuel pump:

- Immediate supply of fuel when the ignition switch is turned on.✓
- Low operational noise.✓
- Less discharge pulsation of fuel.✓
- Compact and light design.✓
- Prevents fuel leak and vapour lock.✓

10.8	 Pre Go Wi Go No Sile Du 	that an injector needs to fulfil: ecise fuel flow rate ✓ ood linearity ✓ de active range ✓ ood spray characteristics ✓ leakage ✓ ent operation ✓ rability ✓	
	• 10	(Any 2 x 1)	(2)
10.9	Ackerma	n principle:	
	10.9.1	Ackerman angle ✓	(1)
	10.9.2	Parts: A – Rear axis ✓ B – Longitudinal axis ✓ C – Steering arms ✓ D – Front wheels✓ E – Extended centre lines from steering arms ✓ F - Intersection ✓	(6)
	10.9.3	Kingpin inclination is designed to bring the front wheels back to the straight-ahead position \checkmark after rounding a corner without any driver effort. \checkmark	(2)
10.10	Alternato	r:	
	10.10.1	Rotor assembly ✓	(1)
	10.10.2	Parts: A – slip ring ✓ B – brushes ✓ C – pole pieces ✓	(3)
	10.10.3	The function of the rotor assembly is to provide a rotating electro-magnet to generate current. \checkmark	(1) [32]
		TOTAL:	200