

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MECHANICAL TECHNOLOGY: FITTING AND MACHINING

2019

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 17 pages.

Copyright reserved

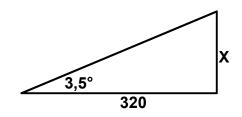
Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	B✓		(1)
1.2	B✓		(1)
1.3	A✓		(1)
1.4	A✓		(1)
1.5	D✓		(1)
1.6	B√		(1) [6]
QUES	TION 2: SAFETY (GENERIC)		
2.1	 Angle grinder: Do not use excessive force while grinding ✓ Ensure that the sparks do not endanger co-workers ✓ Keep hands clear from grinding disc ✓ Maintain a firm grip on the angle grinder ✓ 	(Any 2 x 1)	(2)
2.2	 Welding goggles: To protect your eyes from the spatter ✓ To protect your eyes from the harmful rays ✓ To ensure proper vision of the process ✓ 	(Any 2 x 1)	(2)
2.3	 PPE – Bench grinder: Overall ✓ Safety goggles ✓ Safety shoes ✓ 	(Any 2 x 1)	(2)
2.4	 Process and product workshop layout: The product layout ensures that the machines are ar sequence of the manufacturing process of a product. ✓ 	•	

 The process layout is based on the type of manufacturing process needed in the making of the product. ✓

2.5 **Employer's responsibility – equipment:**


- They must provide and maintain equipment ✓
- Ensure that the equipment is safe to use by employees ✓
- Provide safe storage for equipment ✓
- Provide proper training of employees in the use of the equipment \checkmark
- Enforce safety measures ✓

(2)

3.1	Tests • • •	to distinguish between metals: Bending test: ✓ hit with hammer✓ Filing test ✓ file material(colour and ease) ✓ Machining test ✓ machine material (type of shaving, ease and colour) ✓ Sound ✓ drop on floor(high or low frequency) ✓	(8)
3.2	Heat-	treatment:	
	3.2.1	 Tempering: After hardening, the steel must be tempered To relieve ✓ the strains ✓ induced. To reduce ✓ brittleness. ✓ 	(2)
	3.2.2	 Normalising: To relieve ✓ the internal stresses ✓ produced by forging and machining. 	(2)
	3.2.3	 Hardening: To produce extremely hard steel ✓ to enable it to resist wear and tear ✓ or to use as cutting tools. 	(2) [14]
QUES	TION 4:	MULTIPLE-CHOICE (SPECIFIC)	
4.1	D√		(1)
4.2	B√		(1)
4.3	B√		(1)
4.4	C√		(1)
4.5	B√		(1)
4.6	B√		(1)
4.7	C√		(1)
4.8	A✓		(1)
4.9	C√		(1)
4.10	B√		(1)
4.11	B√		(1)
4.12	D√		(1)
4.13	A✓		(1)
4.14	A✓		(1) [14]

QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)

5.1 **Calculate the tailstock set-over:**

$$Tan\theta = \frac{X}{320}$$
$$x = Tan 3,5^{\circ} \times 320$$
$$= 19,57 \text{ mm}$$

(2)

5.2 **Methods to cut multiple-start threads:**

- By moving the tool with the compound-slide \checkmark
- By turning the change-gears \checkmark
- By using a driving plate with accurately cut slots \checkmark
- By using a graduated driving plate \checkmark

(Any 3 x 1) (3)

5.3 **Parallel key:**

5.3.1 Width:

Width =
$$\frac{D}{4}$$

= $\frac{48}{4}$ \checkmark
= 12 mm \checkmark

5.3.2 Thickness:

Thickness =
$$\frac{D}{6}$$

= $\frac{48}{6}$ \checkmark
= 8 mm \checkmark (2)

5.4 Advantages for using the compound slide method to cut an external V-thread on the centre lathe:

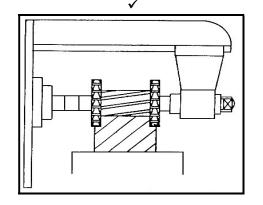
- No unnecessary burden on tool because cutting action takes place on one side of the tool. ✓
- The force on the tool is evenly distributed along the cutting action. ✓
- The thread can be cut at a fairly fast speed because only the cutting edge need to be at centre height and a side rake may be ground. ✓
- By lightly restricting the movement of the apron hand wheel, the non-cutting edge of the tool can be made to polish the side of the thread. ✓

(Any 2 x 1) (2)

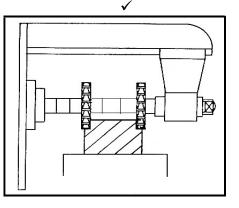
5.5 **Milling processes:**

5.5.1 Advantages of down-cut milling:

- Deeper cuts can be taken, as the force of the cutter is downwards. ✓
- Finer finish is obtained. ✓
- Less vibration. ✓


(Any 1 x 1) (1)

5.5.2 Advantages of up-cut milling:


- The process enables hard steel to be cut, because the total cutting pressure is absorbed by the material at the back of the edge. ✓
- Metal with hard scale, such as castings or forgings, the cut is started under the scale where the material is softer which extends the life of the cutter. ✓
- A coarser feed can be used. ✓
- The strain on the cutter and arbor will be less. ✓

(Any 1 x 1) (1)

5.6 **Gang milling and straddle milling:**

Straddle milling ✓

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

6.1 **Spur gear:**

6.1.1 **Number of teeth:**

Module =
$$\frac{PCD}{T}$$

Teeth = $\frac{PCD}{m}$ \checkmark
= $\frac{99}{3}$
= 33 teeth \checkmark (2)

6.1.2 **Outside diameter:**

OD = PCD + 2a	\checkmark		= m(T + 2)	\checkmark	
= 99 + 2(3)	,	or	= 3(33 + 2)	,	
=105 mm	~		=105 mm	\checkmark	(2)

6.1.3 **Cutting depth:**

Cutting depth $= 2,157m$	\checkmark		= 2,25m	\checkmark	
= 2,157 × 3		or	$= 2,25 \times 3$		
= 6,47 mm	\checkmark		= 6,75 mm	\checkmark	(2)

6.1.4 **Addendum:**

Addendum = m = 3 mm \checkmark (1)

6.1.5 **Dedendum:**

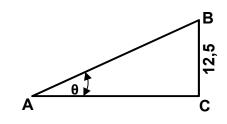
Dedendum = 1,157m	\checkmark		=1,25m	\checkmark	
= 1,157 × 3		or	$=$ 1,25 \times 3		
= 3,47 mm	\checkmark		= 3,75 mm	\checkmark	(2)

6.1.6 **Circular pitch:**

$$CP = m \times \pi$$

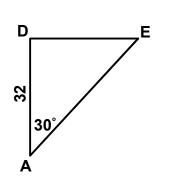
$$= 3 \times \pi$$

$$= 9,42 \text{ mm} \quad \checkmark \tag{2}$$


6.2 Calculate distances 'Y and X':

$$Y = 180 - 2(DE)$$

$$X = 180 - 2 \text{ (DE)} + 2(AC) + 2(rad)$$


Calculate AC:

Tan θ =
$$\frac{BC}{AC}$$
 ✓
AC = $\frac{BC}{Tan \theta}$ ✓
= $\frac{12,5}{Tan 30^{\circ}}$
= 21,65 mm ✓

Calculate DE:

Tan θ =
$$\frac{DE}{AD}$$
 ✓
DE = Tan θ × AD ✓
= Tan 30° × 32
= 18,48 mm ✓

Calculate 'Y':

$$Y = 180 - 2(DE) \qquad \checkmark$$

= 180 - 2(18,48)
= 143,05 mm \checkmark

Calculate 'X':

$$X = 180 - 2(DE) + 2(AC) + 2(rad) \qquad \checkmark$$

= 143,04 + 2(21,65) + 2(12,5) $\qquad \checkmark$
= 143,04 + 43,3 + 25
= 211,34 mm $\qquad \checkmark$

(11)

6.3 **Differential indexing :**

6.3.1 Indexing required:

Indexing =
$$\frac{40}{n}$$

= $\frac{40}{120} \div \frac{5}{5}$ (approximate)
= $\frac{8}{24}$ \checkmark
Approximate indexing: 8 holes on a 24 hole circle \checkmark
or
10 holes on a 30 hole circle \checkmark
or
13 holes on a 39 hole circle \checkmark
or
14 holes on a 42 hole circle \checkmark
or
18 holes on a 54 hole circle \checkmark
(2)

6.3.2 **Change gears required:**

$$\frac{Dr}{Dn} = \frac{A - N}{A} \times \frac{40}{1}$$

$$= \frac{120 - 119}{120} \times \frac{40}{1} \qquad \checkmark$$

$$= \frac{1}{120} \times \frac{40}{1}$$

$$= \frac{40}{120}$$

$$= \frac{40}{120}$$

$$= \frac{4}{12} \times \frac{6}{6}$$

$$\frac{Dr}{Dn} = \frac{24}{72} \qquad \checkmark$$

6.3.3 **Direction of rotation of index plate:**

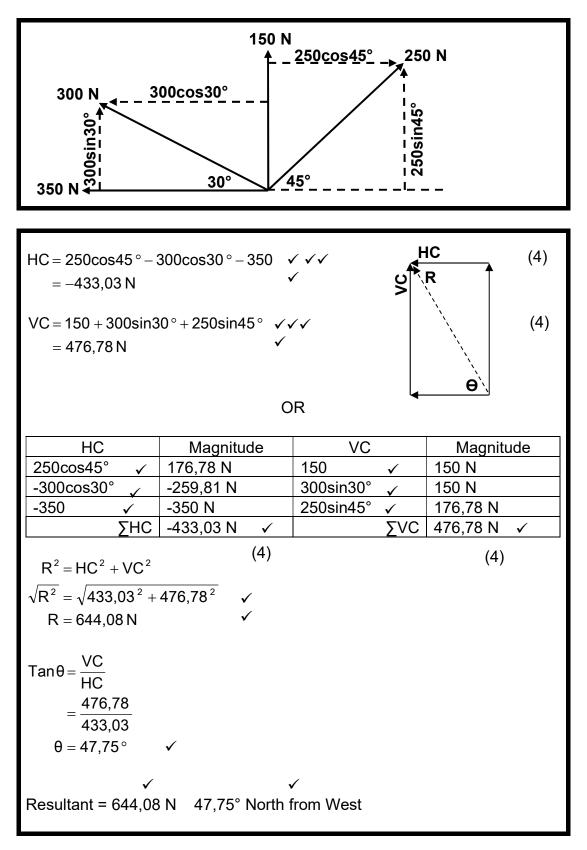
The index plate will rotate in the same \checkmark direction as the index crank.

(1) **[28]**

(3)

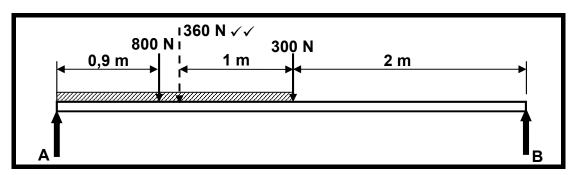
(3)

[13]


QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

= 66,64 mm ✓

7.1	Rockwell hardness tester: A – Test piece / Work piece ✓ B – Diamond cone ✓ C – Load ✓	
	D – Indentation \checkmark	(4)
7.2	Moment tester: To determine the reactions \checkmark on either side \checkmark of a simply loaded beam.	(2)
7.3	Tensile tester: Operation An increasing ✓ axial tensile force ✓ is exerted onto a piece of material while measuring the corresponding ✓ elongation, ✓	(4)
7.4	Depth-micrometer: 50 + 16,00 + 0,5 + 0,14	


QUESTION 8: FORCES (SPECIFIC)

8.1 Forces:

(13)

8.2 Moments:

Calculate A:

Take moments about B.

 $\Sigma RHM = \Sigma LHM \qquad \checkmark$ $(A \times 4) = (300 \times 2) + (360 \times 3) + (800 \times 3, 1) \checkmark$ $\frac{4A}{4} = \frac{4160}{4}$ \checkmark $A = 1040 N \qquad \checkmark$

Calculate B: Take moments about A.

 $\Sigma LHM = \Sigma RHM$ $(B \times 4) = (300 \times 2) + (360 \times 1) + (800 \times 0.9)$ \checkmark $\frac{4B}{4} = \frac{1680}{4}$ A = 420 N

(8)

8.3 **Stress and Strain:**

8.3.1 **Diameter of the shaft:**

$$\sigma = \frac{F}{A}$$

$$A = \frac{F}{\sigma}$$

$$= \frac{40 \times 10^{3}}{20 \times 10^{6}}$$

$$A = 2 \times 10^{-3} \text{ m}^{2}$$

$$A = \frac{\pi D^{2}}{4}$$

$$D = \sqrt{\frac{4A}{\pi}}$$

$$D = \sqrt{\frac{4(2 \times 10^{-3})}{\pi}}$$

$$D = 50,46 \text{ mm}$$

8.3.2 **Strain:**

$$E = \frac{\sigma}{\epsilon} \qquad \checkmark$$
$$\epsilon = \frac{\sigma}{E} \qquad \checkmark$$
$$= \frac{20 \times 10^{6}}{90 \times 10^{9}} \qquad \checkmark$$
$$= 0,22 \times 10^{-3} \qquad \checkmark$$

8.3.3 Change in length:

$$\epsilon = \frac{\Delta L}{L} \qquad \checkmark$$
$$\Delta L = \epsilon \times L \qquad \checkmark$$
$$= (0,22 \times 10^{-3}) \times (2) \qquad \checkmark$$
$$= 0,44 \times 10^{-3} \text{ m}$$
$$= 0,44 \text{ mm} \qquad \checkmark$$

(4)

(5)

QUESTION 9: MAINTENANCE (SPECIFIC)

9.1 **Preventative maintenance:**

- To prevent injury or death.(e.g. Brake failure) ✓
- To prevent financial loss due to damage suffered as a result of part failure. ✓
- To prevent loss of production time. \checkmark

9.2 **Preventative maintenance procedures on gear drive systems:**

- Check and replenish lubrication levels. \checkmark
- Ensure that the gears are properly secured to the shafts. \checkmark
- Clean and replace oil filters. ✓
- Report excessive noise and wear, vibration and overheating for expert attention. ✓

(Any 2 x 1) (2)

(Any 2 x 1)

9.3 **Causes for the malfunctioning of belt drive systems:**

- Incorrect belt tension. ✓
- Misalignment of the pulleys. \checkmark
- Dirt on the contact surfaces between the belt and the pulley. \checkmark
- Lubricant on the contact surfaces between the belt and the pulley. \checkmark
- Overloading the drive system. \checkmark

(Any 2 x 1) (2)

(Any 2 x 1)

9.4 **Procedures to reduce the wear on a chain drive system:**

- Ensure sufficient lubrication. \checkmark
- Accurate alignment of the sprockets. ✓
- Keep the chain drive components clean. \checkmark
- Maintain the correct chain tension in the system. \checkmark

9.5 **Properties of materials:**

9.5.1 Fibre glass:

- High strength \checkmark
- Light weight \checkmark
- Water resistant ✓
- UV-resistant ✓

9.5.2 Vesconite:

- Low friction. \checkmark
- Easily machined. ✓
- High load carrying capacity. ✓
- Self-lubricating. ✓
- Cost-effective. ✓
- Performs well in unhygienic, dirty and un-lubricated environments. ✓

DBE/2019

(2)

(2)

(2)

(Any 2 x 1) (2)

Please turn over

9.5.3 Carbon fibre:

- High strength ✓ •
- Light weight ✓ •
- Water resistant ✓ •
- UV-resistant ✓
- Self-lubricating ✓ •

(Any 2 x 1) (2)

9.6	'Thermoplastic'	composites	or	'Thermo	hardened'	(thermosetting)
	composites:					

9.6.1	Teflon: Thermoplastic ✓	(1)
9.6.2	Bakelite: Thermo hardened ✓	(1)
9.6.3	Polyvinyl chloride (PVC):	

- Thermoplastic ✓ (1)
- 9.7 Higher coefficient of friction: Rubber ✓

QUESTION 10: JOINING METHODS (SPECIFIC)

10.1 Calculations on square threads:

10.1.1 The pitch diameter:

Lead = Pitch × number of starts

$$P = \frac{\text{Lead}}{\text{Number of starts}} \qquad \checkmark$$
$$= \frac{30}{3}$$
$$= 10 \text{ mm} \qquad \checkmark$$

.

Pitch diameter =
$$OD - \left(\frac{P}{2}\right)$$

= $75 - \left(\frac{10}{2}\right)$
= 70 mm

(4)

(1) [18]

10.1.2 The helix angle of the thread:

Helix angle
$$\tan \theta = \frac{\text{lead}}{\pi \times \text{pitch diameter}} \checkmark$$

$$= \frac{30}{\pi \times 70} \qquad \checkmark \checkmark$$
$$\theta = 7,77^{\circ}$$
$$\theta = 7^{\circ}46' \qquad \checkmark$$

(4) Please turn over

DBE/2019

	10.1.3	The leading tool angle:		
		Leading tool angle = $90^{\circ} - (\text{helix} + \text{clearance angle}) \checkmark$ = $90^{\circ} - (7^{\circ}46' + 3^{\circ})$ = $79^{\circ}14'$		(2)
	10.1.4	The following tool angle:		
		= 90° + (7°46'-3°)	√ √	(2)
10.2	Measure	ements of a screw thread:		
	10.2.1	Metric screw thread \checkmark		(1)
	10.2.2	Crest diameter / Outside diameter 🗸		(1)
	10.2.3	Pitch ✓		(1)
10.3	Angles o	of a square thread cutting tool:		
	10.3.1	A = Helix angle ✓		(1)
	10.3.2	B = Leading tool angle \checkmark		(1)
	10.3.3	C = Following tool angle \checkmark	[(1) [18]

(2)

(4)

(6)

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 Advantages of a chain drive system compared to a belt drive system:

- Chain drives are stronger ✓
- No slip occurs ✓

11.2 Hydraulic system:

11.2.1 Fluid pressure:

$$A_{A} = \frac{\pi D_{A}^{2}}{4} \qquad \checkmark$$

$$= \frac{\pi \times 0,022^{2}}{4}$$

$$= 0,38 \times 10^{-3} \text{ m}^{2} \qquad \checkmark$$

$$p = \frac{F_{A}}{A_{A}} \qquad \checkmark$$

$$= \frac{250}{0,38 \times 10^{-3}}$$

$$= 0,66 \times 10^{6} \text{ Pa or } 657665,05 \text{ Pa} \qquad \checkmark$$

$$= 0,66 \text{ MPa}$$

11.2.2 Load on piston B:

$$A_{B} = \frac{\pi D_{B}^{2}}{4} \qquad \checkmark$$

$$= \frac{\pi \times 0.248^{2}}{4}$$

$$= 48.31 \times 10^{-3} \text{ m}^{2} \qquad \checkmark$$

$$p = \frac{F}{A} \qquad \checkmark$$

$$F_{B} = p \times A_{B} \qquad \checkmark$$

$$= (0.66 \times 10^{6}) \times (48.31 \times 10^{-3}) \qquad \checkmark$$

$$= 31.884.6 \text{ N} \qquad \checkmark$$

11.3 **Purpose of a filter in a hydraulic system:**

- The purpose of the filter is to retain, ✓ by some porous medium, the insoluble contaminates ✓ from the fluid.
- Strain and filter ✓ the oil of contaminates. ✓

(Any 1 x 2) (2)

11.4 V-belt drive system – Power transmitted:

$$\frac{I_{1}}{T_{2}} = 2,5$$

$$T_{2} = \frac{T_{1}}{2,5}$$

$$= \frac{440}{2,5}$$

$$= 176 \text{ N}$$

$$P = (T_{1} - T_{2}) \text{ v}$$

$$= (440 - 176) 10$$

$$= (440 - 176) 10 \qquad \checkmark$$

= 2640 Watt
= 2,64 kW \checkmark (5)

11.5 **Gear system:**

11.5.1 **The number of teeth on the idler gear:**

$$T_{B} \times N_{B} = T_{C} \times N_{C} \qquad \checkmark$$

$$T_{B} = \frac{T_{C} \times N_{C}}{N_{B}} \qquad \checkmark$$

$$= \frac{80 \times 260}{800}$$

$$= 26 \text{ teeth} \qquad \checkmark \qquad (3)$$

11.5.2 **The rotation frequency of the driver gear:**

$$T_{A} \times N_{A} = T_{C} \times N_{C} \qquad \checkmark$$

$$T_{A} = \frac{T_{C} \times N_{C}}{N_{A}} \qquad \checkmark$$

$$= \frac{80 \times 260}{60}$$

$$= 346,67 \text{ r/min} \quad \checkmark \qquad (3)$$

11.6 **Chain drive system – Gear ratio (GR):**

$$GR = \frac{DN}{DR} \qquad \checkmark$$
$$= \frac{32}{48} \qquad \checkmark$$
$$= 0.67:1 \quad \checkmark \qquad (3)$$

[28j

TOTAL: 200