

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MECHANICAL TECHNOLOGY: WELDING AND METALWORK 2019

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 14 pages.

DBE/2019

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1 B ✓ (1)

1.2 B ✓ (1)

1.3 A ✓ (1)

1.4 A ✓ (1)

1.5 D ✓ (1)

1.6 B ✓ (1) [6]

QUESTION 2: SAFETY (GENERIC)

2.1 Angle grinder:

- Do not use excessive force while grinding ✓
- Ensure that the sparks do not endanger co-workers ✓
- Keep hands clear from grinding disc ✓
- Maintain a firm grip on the angle grinder ✓

(Any 2 x 1) (2)

2.2 Welding goggles:

- To protect your eyes from the spatter ✓
- To protect your eyes from the harmful rays ✓
- To ensure proper vision of the process ✓

(Any 2 x 1) (2)

2.3 **PPE – Bench grinder:**

- Overall ✓
- Safety goggles ✓
- Safety shoes ✓

(Any 2 x 1) (2)

2.4 Process and product workshop layout:

- The product layout ensures that the machines are arranged in the sequence of the manufacturing process of a product. ✓
- The process layout is based on the type of manufacturing process needed in the making of the product. ✓

2.5 **Employer's responsibility – equipment:**

- They must provide and maintain equipment ✓
- Ensure that the equipment is safe to use by employees ✓
- Provide safe storage for equipment ✓
- Provide proper training of employees in the use of the equipment ✓
- Enforce safety measures ✓

(Any 2 x 1) (2)

[10]

(2)

QUESTION 3: MATERIALS (GENERIC)

3.1 Tests to distinguish between metals:

- Bending test: ✓ hit with hammer✓
- Filing test √file material(colour and ease) √
- Machining test ✓ machine material (type of shaving, ease and colour) ✓
- Sound ✓ drop on floor(high or low frequency) ✓ (8)

3.2 **Heat-treatment:**

3.2.1 Tempering:

After hardening, the steel must be tempered

- To relieve ✓ the strains ✓ induced.
- To reduce ✓ brittleness. ✓

(Any 1 x 2) (2)

3.2.2 Normalising:

- To relieve ✓ the internal stresses ✓ produced by forging and machining.
- (2)

3.2.3 Hardening:

- To produce extremely hard steel ✓ to enable it to resist wear and tear ✓ or to use as cutting tools.
- [14]

(2)

[14]

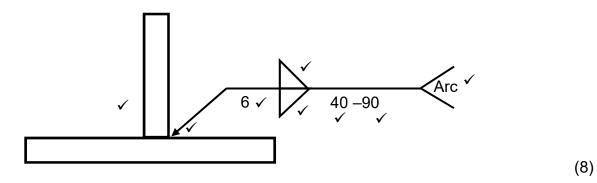
QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

- 4.1 C ✓ (1)
- 4.2 D✓ (1)
- 4.3 В✓ (1)
- C✓ 4.4 (1)
- 4.5 A ✓ (1)
- D✓ 4.6 (1)
- 4 7 B✓ (1)
- 4.8 A **✓** (1)
- 4.9 D ✓ (1)
- 4.10 D✓ (1)
- 4.11 A ✓ (1)
- 4.12 A ✓ (1)
- C✓ 4.13 (1)
- В✓ 4.14 (1)

QUESTION 5: TERMINOLOGY (TEMPLATES) (SPECIFIC)

5.1 **Roof truss:**

A – Purlin ✓


B – Rafter ✓

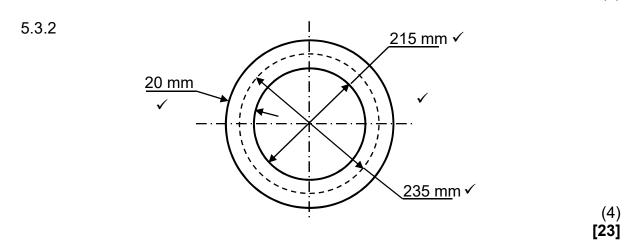
C – Incline tie ✓

D – Tie beam ✓

E – Shoe plate/Gusset plate ✓ (5)

5.2 Fillet weld on T-joint:

5.3 **Dimensions of the material:**


5.3.1 Mean
$$\phi$$
=Inside ϕ + Thickness \checkmark

$$= 215 + 20 \qquad \checkmark$$

$$= 235 \text{ mm}$$

Mean circumferance =
$$\pi \times$$
 Mean ϕ
= $\pi \times 235$
= 738,27 mm

Round off to 740 mm \checkmark (6)

(5)

(4)

(4)

(2) [**18**]

QUESTION 6: TOOLS AND EQUIPMENT (SPECIFIC)

6.1 **Punch and shear machine:**

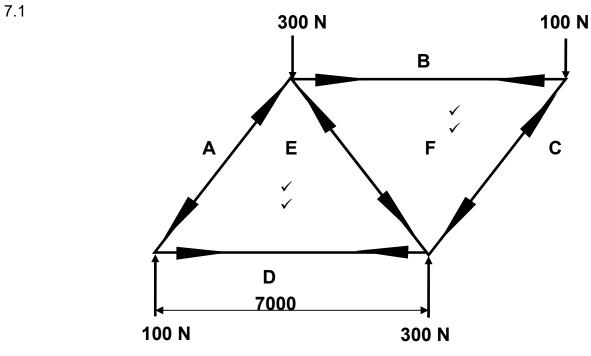
- A shear and punch machine is a heavy-duty machine for cutting steel profiles and punching holes into steel plates. ✓
- Croppers are electrically driven ✓ and make use of a heavy flywheel and clutches to engage various shearing blades to shear/punch different profiles. ✓
- Punches and corresponding dies need to be set to the desired size before punching ✓
- They do not require cooling fluid because the shearing action does not develop a great deal of heat ✓

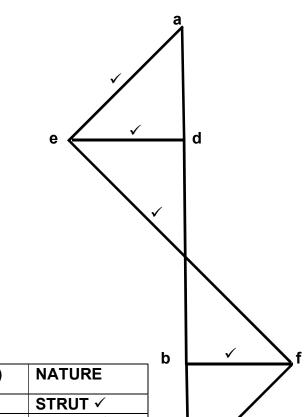
6.2 Plasma cutter:

- The basic cutting process involves creating an electrical channel of ionised gas; that is plasma, ✓ from the plasma cutter itself through the work piece that is being cut. Thus forming a completed electric circuit back to the plasma cutter via a grounding clamp. ✓
- This is accomplished by compressed air that is blown toward the work piece through a focused nozzle at high speed. ✓
- A high frequency, electrical arc is then formed within the gas between an electrode near or integrated into the gas nozzle and the work piece itself. ✓

6.3 Internal Thread cutting process:

- Drill the required core diameter ✓
- Use the three taps in order taper / intermediate / plug ✓
- Check thread with gauge/bolt when complete ✓ (3)


6.4 Brinell hardness test:


- The Brinell hardness tester makes an indentation into the test material with a 10 mm hardened steel or carbide ball.
- A load of 3000 kg is used for harder metals, while 1500 kg is used for softer metals. ✓
- The diameter of the indentation is measured with a microscope. ✓
- The diameter is then used in a formula to determine the Brinell reading.

6.5 Rockwell hardness testing over Brinell hardness testing:

The advantages of the Rockwell Hardness method include the direct readout of the Rockwell Hardness number ✓ and rapid testing time ✓

QUESTION 7: FORCES (SPECIFIC)

MEMBER	FORCE (N)	NATURE
AE	140 N ✓	STRUT ✓
EF	285 N ✓	STRUT ✓
FC	140 N ✓	STRUT ✓
BF	100 N ✓	TIE ✓
ED	100 N ✓	TIE ✓

(19)

(5)

7.2 **Beams:**

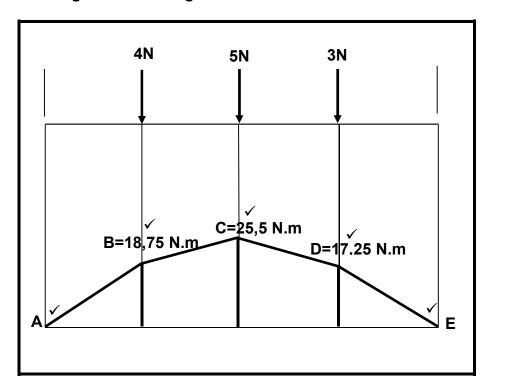
7.2.1 Reactions at the supports RL and RR:

$$R_{L} \times 12 = (3 \times 3) + (5 \times 6) + (4 \times 9) \checkmark$$

$$R_{L} = 6,25N \checkmark$$

$$R_R \times 12 = (4 \times 3) + (5 \times 6) + (3 \times 9)$$

 $R_R = 5,75 \text{ N}$ (4)


7.2.2 **Bending moments:**

$$BM_B = (6,25 \times 3) \checkmark$$

= 18,75 N.m \checkmark

$$BM_C = (6.25 \times 6) - (4 \times 3)$$
 \checkmark
= 25.5 N.m \checkmark

$$BM_{D} = (6,25 \times 9) - (4 \times 6) - (5 \times 3) \checkmark$$
= 17,25 N.m \(\sigma\) (6)

7.2.3 **Bending moments diagram:**

SCALES: Space diagram: 10 mm = 1 m

Bending moment diagram: 5 mm = 1 N.m

(5)

7.3 **Stress and Strain:**

7.3.1 Stress in the shaft:

Area =
$$\frac{\pi D^2}{4}$$
 \checkmark

$$= \frac{\pi \times (32 \times 10^{-3})^2}{4}$$

$$= 0.8 \times 10^{-3} m^2 \checkmark$$

$$\sigma = \frac{\text{Load}}{\text{Area}} \checkmark$$

$$= \frac{100 \times 10^{-3}}{0.8 \times 10^{-3}} \checkmark$$

$$= 125 \times 10^{-6} \text{ Pa} \checkmark$$

$$= 125 \text{ MPa}$$

7.3.2 **Strain in the steel:**

$$\varepsilon = \frac{\Delta L}{oL}$$

$$= \frac{0.5}{120}$$

$$= 4.17 \times 10^{-3}$$

$$(3)$$

7.3.3 Young's modulus of elasticity:

$$E = \frac{\sigma}{\epsilon} \qquad \checkmark$$

$$= \frac{125 \times 10^{-6}}{4,17 \times 10^{-3}} \qquad \checkmark$$

$$= 29,98 \times 10^{-9} \text{ Pa}^{\checkmark}$$

$$= 29,98 \text{ GPa} \qquad (3)$$
[45]

QUESTION 8: JOINING METHODS (WELD INSPECTION) (SPECIFIC)

8.1 Factors to be observed during oxy-acetylene welding:

- Correct flame for the work at hand ✓
- Correct angle of welding torch and rod ✓
- Depth of fusion ✓
- The welding rate ✓

(Any 2 x 1) (2)

8.2 Welding defects:

Incomplete penetration:

- Welding current too low ✓
- Welding speed too fast ✓
- Incorrect welding angle ✓
- Poor joint preparation ✓
- Insufficient root gap ✓

(Any 2 x 1) (2)

8.3 Methods reducing of welding defects:

8.3.1 **Slag inclusion:**

- Using well-maintained consumables ✓
- Ensure adequate shielding gas ✓
- Clean the joint properly ✓
- Slag must be removed before welding the next bead ✓

(Any 2 x 1) (2)

8.3.2 **Centreline cracks:**

- Aiming for a width-to-depth ratio of 1:1 ✓
- Decreasing the current to reduce excess penetration ✓
- Decreasing welding voltage ✓
- Slowing travel speed ✓

(Any 2 x 1) (2)

8.4 **Porosity:**

Porosity refers to cavity-type pores ✓ (bubbles or gas pockets) formed by gas ✓ during the solidification ✓ of molten weld metal.

(3)

8.5 **Non-destructive test:**

The welded joint is not \checkmark destroyed \checkmark in the process of testing.

(2)

8.6 Ultrasonic test:

- To detect internal flaws ✓
- To detect surface flaws ✓ (2)

8.7 **Visual inspection:**

- Shape of profile ✓
- Uniformity of surface ✓
- Overlap ✓
- Undercutting ✓
- Penetration bead ✓
- Root groove ✓

(Any 3×1) (3)

8.8 Nick break test:

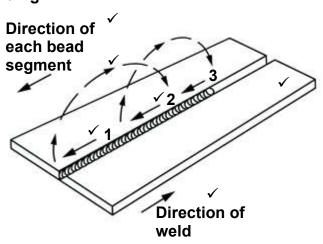
- Make a hacksaw cut at both edges, through the centre of the weld. ✓
- Place specimen on two steel supports. ✓
- Use a sledge hammer to break the specimen in the area of the cuts. ✓
- Inspect the exposed weld metal in the break ✓ for incomplete fusion, slag inclusion etc. ✓

(5) **[23]**

QUESTION 9: JOINING METHODS (STRESSES AND DISTORTION) (SPECIFIC)

9.1 **Shrinkage in welding:**

Shrinkage is a form of plastic deformation ✓ where the metal has deformed as a result ✓ of contraction ✓ on cooling. ✓


(4)

(4)

9.2 Factors affecting distortion and residual stress:

- If the expansion that occurs when metal is heated is resisted, then deformation will occur. ✓
- When contraction that occurs on cooling is resisted, then a stress will be applied. ✓
- If that applied stress causes movement, then distortion occurs. ✓
- If the applied stress does not cause movement, then there will be residual stress in the welded joint. ✓

9.3 Back-step welding:

(6)

9.4 Factors affecting the temperature of cold worked steel for recrystallisation:

- The prior amount of cold work ✓
- The temperature and time of annealing process ✓
- Composition of the metal. ✓
- The melting point ✓

(4) [18]

QUESTION 10: MAINTENANCE (SPECIFIC)

10.1 Effect of overloading:

10.1.1 **Power saw:**

- Driving motor will be damaged. ✓
- The cutting blade will be damaged. ✓
- The blade may deflect and result in a skew cut. ✓

(Any 1 x 1) (1)

10.1.2 **Bench grinder:**

- Result in malfunction due to excessive loads on the spindle bearings, grinding wheel and machine motor. ✓
- Overloading will wear the grinding wheel excessively and unevenly. ✓
- It shortens the life span of the spindle bearings and motor. ✓

(Any 1 x 1) (1)

10.2 Effect of friction:

10.2.1 **Drill bit of a pedestal drill:**

- Due to the heat caused by friction the cutting edge of the drill bit softens. ✓
- Lifespan of the drill bit will be reduced. ✓

(Any 1 x 1) (1)

10.2.2 Rolling machine's bearings:

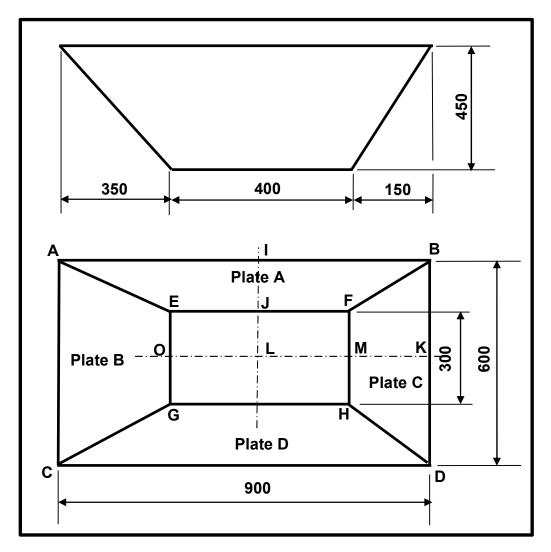
Journals and bearings will wear out. ✓

(1)

10.3 A punch and a shearing machine:

- Check the condition of the switch gear, wiring and isolation. ✓
- Ensure that the isolator is lockable. ✓
- Check the condition of the stop/start equipment. ✓
- Check the operation of emergency stop where fitted. ✓
- Check connections of electrical wiring. ✓

(Any 2 x 1) (2)


10.4 Record keeping:

- Monitoring of the machine's condition. ✓
- Monitoring of the maintenance costs on the machines. ✓
- Upholding the warranties and guarantees. ✓

 $(Any 2 \times 1)$ (2)

[8]

QUESTION 11: TERMINOLOGY (DEVELOPMENT) (SPECIFIC)

11.1.1 **Length of IJ:**

Plates A and D.

$$IJ = IL - JL \qquad \checkmark$$

$$IJ = 300 - 150 \qquad \checkmark$$

$$IJ = 150 \,\text{mm} \qquad \checkmark \qquad (3)$$

11.1.2 True length of A-E:

True Length A-E=
$$\sqrt{IE^2 + AI^2 + VH^2}$$
 $\checkmark \checkmark$

$$A-E=\sqrt{150^2 + 350^2 + 450^2} \checkmark \checkmark$$

$$A-E=589.49 \, \text{mm} \checkmark$$

$$=590 \, \text{mm} \checkmark$$
(6)

11.1.3 **Length of MK:**

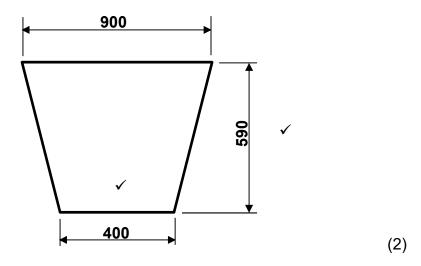
$$MK = LK - LM$$

$$MK = 350 - 200$$

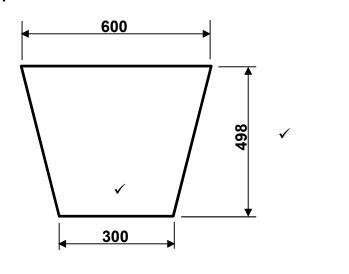
$$MK = 150 \text{ mm}$$

$$\checkmark$$
(2)

11.1.4 The True length of D-H:


True lengthD-H=
$$\sqrt{HK^2 + KD^2 + VH^2}$$
 $\checkmark\checkmark$

$$D-H=\sqrt{150^2 + 150^2 + 450^2}$$
 $\checkmark\checkmark$


$$D-H=497.49 mm$$
 \checkmark

$$SAY 498 mm$$
 \checkmark (6)

11.1.5 Pattern for plates A:

11.1.6 Pattern for Plate C:

(2) **[21]**

TOTAL: 200