FORMULA SHEET FOR MECHANICAL TECHNOLOGY: FITTING AND MACHINING

1. BELT DRIVES

1.1 \quad Belt speed $=\frac{\pi D N}{60}$
1.2 Belt speed $=\frac{\pi(D+t) \times N}{60} \quad(t=$ belt thickness $)$
1.3 \quad Belt mass $=$ Area \times Length \times Density $\quad(A=$ thickness \times width $)$
1.4 Speed ratio $=\frac{\text { Diameter of driven pulley }}{\text { Diameter of driver pulley }}$
1.5 Belt length (flat) $=[(D+d) \times 1,57]+(2 \times$ centre distance $)$
1.6 Open-belt length $=\frac{\pi(D+d)}{2}+\frac{(D+d)^{2}}{4 c}+2 c$
1.7 Crossed-belt length $=\frac{\pi(D+d)}{2}+\frac{(D+d)^{2}}{4 c}+2 c$
1.8 $\operatorname{Power}(P)=\frac{\left(T_{1}-T_{2}\right) \pi D N}{60}$

Where:
$T_{1}=$ force in the tight side
$T_{2}=$ force in the slack side
$T_{1}-T_{2}=$ effective tensile force (T_{e})
1.9 Ratio between tight side and slack side $=\frac{T_{1}}{T_{2}}$
1.10 Width $=\frac{T_{1}}{\text { Permissible tensile force }}$
$1.11 \quad N_{D R} \times D_{D R}=N_{D N} \times D_{D N}$
1.12 Torque $=$ Force \times Radius
1.13 Power $(P)=\frac{2 \pi N T}{60}$

2. STRESS AND STRAIN

2.1 $\quad A_{\text {shaft }}=\frac{\pi d^{2}}{4}$
2.2 $\quad A_{\text {pipe }}=\frac{\pi\left(D^{2}-d^{2}\right)}{4}$
2.3 Safety factor $=\frac{\text { Maximum stress/Break stress }}{\text { Safe working stress }}$
2.4 Stress $=\frac{\text { Force }}{\text { Area }} \quad$ OR $\quad \sigma=\frac{F}{A}$
2.5 Strain $=\frac{\text { Change in length }}{\text { Original length }} \quad O R \quad \varepsilon=\frac{\Delta L}{o L}$
2.6 Young's modulus $=\frac{\text { Stress }}{\text { Strain }} \quad$ OR $\quad E=\frac{\sigma}{\varepsilon}$
3. HYDRAULICS
3.1 \quad Pressure $=\frac{\text { Force }}{\text { Area }} \quad$ OR $\quad P=\frac{F}{A}$
3.2 V Volume $=$ Area \times Stroke length (lor $s)$
3.3 Work done $=$ Force \times distance
3.4 $\quad P_{A}=P_{B}$
$3.5 \quad \frac{F_{A}}{A_{A}}=\frac{F_{B}}{A_{B}}$

4. GEAR DRIVES

4.1 \quad Power $(P)=\frac{2 \pi N T}{60}$
4.2 Gear Ratio $=\frac{\text { Product of teeth on driven gear }}{\text { Product of teeth on driver gear }} \quad$ OR \quad Speed ratio $=\frac{N_{\text {input }}}{N_{\text {output }}}$

$$
\begin{array}{ll}
\text { 4.3 } & \frac{N_{\text {input }}}{N_{\text {output }}}=\frac{\text { Product of teeth on driven gear }}{\text { Product of teeth on driver gear }} \\
4.4 & N_{A} \times T_{A}=N_{B} \times T_{B} \\
4.5 & \text { Torque }=\text { Force } \times \text { Radius } \\
4.6 & \text { Torque transmitted }=\text { Gear ratio } \times \text { Input torque } \\
4.7 & \text { Module }=\frac{\text { Pitch-circle diameter }}{\text { Number of teeth }} \quad O R \quad m=\frac{P C D}{T}
\end{array}
$$

4.8 Pitch-circle diameter $=\frac{\text { Circular pitch } \times \text { Number of teeth }}{\pi}$

OR

$$
P C D=\frac{C P \times T}{\pi}
$$

4.9 Outside diameter $(O D)=P C D+2(m)$
4.10 Addendum $=$ Module \quad OR $\quad a=m$
4.11 Dedendum $(b)=1,157 \times m \quad$ OR Dedendum $(b)=1,25 \times m$
4.12 Cutting depth $(h)=2,157 \times m \quad$ OR \quad Cutting depth $(h)=2,25 \times m$
4.13 Clearance $(c)=0,157 \times m \quad$ Clearance $(c)=0,25 \times m$
4.14 Circular pitch $(C P)=m \times \pi$
4.15 Working depth $(W D)=2 \times m \quad$ OR \quad Working depth $(W D)=2 \times a$

5. KEYWAYS

5.1 Width $(W)=\frac{D}{4}$
5.2 Thickness $(T)=\frac{D}{6}$
5.3 Length $(L)=1,5 \times D$

Where:

$$
D=\text { Diameter of shaft }
$$

5.4 Standard taper for taper key: 1 in 100 or 1:100
6. CINCINNATI DIVIDING HEAD TABLE FOR MILLING MACHINE

Hole circles											
Side 1	24	25	28	30	34	37	38	39	41	42	43
Side 2	46	47	49	51	53	54	57	58	59	62	66
Change gears											
Gears	24×2	28	32	40	44	48	56	64	72	86	100

6.1 \quad Indexing $=\frac{40}{n} \quad(n=$ number of divisions $)$
6.2 $\frac{D r}{D n}=\frac{A-n}{A} \times \frac{40}{1}$
OR

$$
\frac{D r}{D n}=(A-n) \times \frac{40}{A}
$$

Where:
$A=$ chosen number of divisions
$n=$ real number of divisions

7. DOVETAILS

Where:
$R=$ Radius of precision roller
$y=$ Distance from top edge of dovetail in relation to bottom corner of dovetail
$x=$ Distance from middle of precision roller to bottom corner of dovetail
$\theta=$ Dovetail included angle (normally 60°)
$h=$ height of dovetail
$w=$ Minimum width of dovetail
$W=$ maximum width of dovetail
$m=$ Distance between rollers
$M=$ Distance over rollers

8. TAPERS

8.1 $\tan \frac{\theta}{2}=\frac{D-d}{2 \times l} \quad(l=$ Taper length $)$
8.2 Tail stock set - over $=\frac{L(D-d)}{2 \times l} \quad(L=$ Distance between centres $)$

9. SCREW THREADS

9.1 Mean diameter $=$ Outside diameter $-(1 / 2 \times$ Pitch $) \quad O R \quad D_{m}=O D-\frac{\mathrm{P}}{2}$
9.2 Effective diameter $\left(D_{\text {eff }}\right)=$ Pitch diameter $\left(D_{p}\right)=$ Mean diameter $\left(D_{m}\right)$
9.3 Lead $=$ Pitch \times Number of starts
9.4 Height of screw thread $=0,866 \times$ Pitch (P)
9.5 Depth of screw thread $=0,613 \times \operatorname{Pitch}(P)$
9.6 Helix angle: $\operatorname{Tan} \theta=\frac{\text { Lead }}{\pi \times D_{m}}$
9.7 Leading angle $=90^{\circ}-($ Helix angle + Clearance angle $)$
9.8 Following angle $=90^{\circ}+($ Helix angle - Clearance angle $)$
$9.9 \quad D_{P}=D_{N}-(0,866 \times P)$
10. PYTHAGORAS' THEOREM AND TRIGONOMETRY

$10.1 \operatorname{Sin} \theta=\frac{y}{r}$
10.2 $\operatorname{Cos} \theta=\frac{x}{r}$
10.3 $\operatorname{Tan} \theta=\frac{y}{x}$
$10.4 \quad r^{2}=x^{2}+y^{2}$

