FORMULA SHEET FOR MECHANICAL TECHNOLOGY: FITTING AND MACHINING

1. BELT DRIVES

- 1.1 Belt speed = $\frac{\pi DN}{60}$
- 1.2 Belt speed = $\frac{\pi(D+t) \times N}{60}$ (t = belt thickness)
- 1.3 Belt mass = Area \times Length \times Density (A = thickness \times width)

$$1.4 \qquad Speed \ ratio = \frac{Diameter \ of \ driven \ pulley}{Diameter \ of \ driver \ pulley}$$

1.5 Belt length (flat) = $[(D + d) \times 1,57] + (2 \times centre \ distance)$

1.6 *Open-belt length* =
$$\frac{\pi (D+d)}{2} + \frac{(D+d)^2}{4c} + 2c$$

1.7 Crossed-belt length =
$$\frac{\pi (D+d)}{2} + \frac{(D+d)^2}{4c} + 2c$$

1.8 Power (P) =
$$\frac{(T_1 - T_2)\pi D N}{60}$$

Where:

 $T_1 = force in the tight side$ $T_2 = force in the slack side$ $T_1 - T_2 = effective tensile force (T_e)$

1.9 Ratio between tight side and slack side =
$$\frac{T_1}{T_2}$$

1.10 Width =
$$\frac{T_l}{Permissible tensile force}$$

$$1.11 \quad N_{DR} \times D_{DR} = N_{DN} \times D_{DN}$$

1.12 Torque = *Force* × *Radius*

1.13 Power (P) =
$$\frac{2\pi NT}{60}$$

Copyright reserved

2. STRESS AND STRAIN

2.1 $A_{\text{shaft}} = \frac{\pi d^2}{4}$

$$2.2 \qquad A_{\mathsf{pipe}} = \frac{\pi \left(D^2 - d^2 \right)}{4}$$

2.3 Safety factor =
$$\frac{Maximum \ stress/Break \ stress}{Safe \ working \ stress}$$

2.4 Stress =
$$\frac{Force}{Area}$$
 OR $\sigma = \frac{F}{A}$

2.5 Strain =
$$\frac{Change in length}{Original length}$$
 OR $\varepsilon = \frac{\Delta L}{oL}$

2.6 Young's modulus =
$$\frac{Stress}{Strain}$$
 OR $E = \frac{\sigma}{\varepsilon}$

3. HYDRAULICS

3.1 Pressure = $\frac{Force}{Area}$ OR $P = \frac{F}{A}$

3.2
$$Volume = Area \times Stroke \ length \ (l \ or \ s)$$

3.3 Work done = Force × distance

$$3.4 \qquad P_A = P_B$$

$$3.5 \qquad \frac{F_A}{A_A} = \frac{F_B}{A_B}$$

4. GEAR DRIVES

4.1 Power (P) =
$$\frac{2\pi NT}{60}$$

4.2 Gear Ratio =
$$\frac{Product of teeth on driven gear}{Product of teeth on driver gear}$$
 OR Speed ratio = $\frac{N_{input}}{N_{output}}$

4.3
$$\frac{N_{input}}{N_{output}} = \frac{Product of teeth on driven gear}{Product of teeth on driver gear}$$

$$4.4 \qquad N_A \times T_A = N_B \times T_B$$

4.5
$$Torque = Force \times Radius$$

4.6 Torque transmitted = Gear ratio × Input torque

4.7 Module =
$$\frac{Pitch-circle \ diameter}{Number \ of \ teeth}$$
 $OR \quad m = \frac{PCD}{T}$

4.8 Pitch-circle diameter =
$$\frac{Circular pitch \times Number of teeth}{\pi}$$
OR

$$PCD = \frac{CP \times T}{\pi}$$

4.9 Outside diameter (OD) =
$$PCD + 2(m)$$

- 4.10 Addendum = Module OR
- 4.11 Dedendum (b) = $1,157 \times m$ OR
- 4.12 Cutting depth (h) = $2,157 \times m$ OR
- 4.13 Clearance (c) = $0,157 \times m$ OR
- 4.14 *Circular pitch* (*CP*) = $m \times \pi$
- 4.15 Working depth (WD) = $2 \times m$ OR

Working depth (WD) = $2 \times a$

Dedendum (b) = $1,25 \times m$

Clearance (c) = $0,25 \times m$

Cutting depth (h) = $2,25 \times m$

a = m

5. KEYWAYS

- 5.1 Width (W) = $\frac{D}{4}$
- 5.2 Thickness $(T) = \frac{D}{6}$
- 5.3 Length (L) = $1,5 \times D$ Where: D = Diameter of shaft
- 5.4 Standard taper for taper key: 1 in 100 or 1 : 100

6. CINCINNATI DIVIDING HEAD TABLE FOR MILLING MACHINE

Hole circles											
Side 1	24	25	28	30	34	37	38	39	41	42	43
Side 2	46	47	49	51	53	54	57	58	59	62	66
Change gears											
Gears	24 x 2	28	32	40	44	48	56	64	72	86	100

6.1 Indexing =
$$\frac{40}{n}$$
 (*n* = number of divisions)

6.2
$$\frac{Dr}{Dn} = \frac{A-n}{A} \times \frac{40}{1}$$
 OR $\frac{Dr}{Dn} = (A-n) \times \frac{40}{A}$

Where:

A = chosen number of divisions n = real number of divisions

7. DOVETAILS

Where:

- R = Radius of precision roller
- *y* = *Distance from top edge of dovetail in relation to bottom corner of dovetail*
- x = Distance from middle of precision roller to bottom corner of dovetail
- θ = Dovetail included angle (normally 60°)
- *h* = *height of dovetail*
- w = Minimum width of dovetail
- W = maximum width of dovetail
- *m* = *Distance between rollers*
- $M = Distance \ over \ rollers$

8. TAPERS

8.1 $\tan \frac{\theta}{2} = \frac{D - d}{2 \times l}$ (*l* = Taper length)

8.2 Tail stock set - over =
$$\frac{L(D - d)}{2 \times l}$$
 (L = Distance between centres)

9. SCREW THREADS

- 9.1 Mean diameter = Outside diameter ($\frac{1}{2} \times Pitch$) OR $D_m = OD \frac{P}{2}$
- 9.2 Effective diameter $(D_{eff}) = Pitch \ diameter \ (D_p) = Mean \ diameter \ (D_m)$

- 9.4 Height of screw thread = $0,866 \times Pitch(P)$
- 9.5 Depth of screw thread = $0,613 \times Pitch(P)$

9.6 Helix angle:
$$Tan \ \theta = \frac{Lead}{\pi \times D_m}$$

- 9.7 Leading angle = 90° (Helix angle + Clearance angle)
- 9.8 Following angle = 90° + (Helix angle Clearance angle)

9.9
$$D_P = D_N - (0,866 \times P)$$

10. PYTHAGORAS' THEOREM AND TRIGONOMETRY

- 10.2 $\cos \theta = \frac{x}{r}$
- 10.3 Tan $\theta = \frac{y}{x}$

$$10.4 \quad r^2 = x^2 + y^2$$