

MECHANICAL TECHNOLOGY (AUTOMOTIVE)

GUIDELINES FOR PRACTICAL ASSESSMENT TASKS

GRADE 12

2024

These guidelines consist of 48 pages.

TABLE OF CONTENTS

1.	INTRODUCTION	Page 3		
2.	TEACHER GUIDELINES	4		
	 2.1 Administration of the PAT 2.2 Assessment of the PAT 2.3 Moderation of the PAT 2.4 Consequences of absence/non-submission of tasks 2.5 Declaration of Authenticity 	4 4 4 5 6		
3.	CANDIDATE GUIDELINES	7		
	Instructions to the candidate	7		
4.	SPECIALISATION: AUTOMOTIVE (SPECIFIC)			
	INTRODUCTION TASK 1: Compression test TASK 2: Cylinder leakage test TASK 3: Exhaust gas analysis TASK 4: Wheel balancing TASK 5: Fuel system test TASK 6: Wheel alignment TASK 7: Charging system TASK 8: Computerised diagnostic scanner TASK 9: Engine components measurement and calculations (COMPULSORY)	8 11 13 16 19 23 26 30 33 37		
5.	COMPOSITE MARK SHEET - TOTALS	45		
6.	ANNEXURE A – SPECIFICATIONS SHEET	46		
7.	CONCLUSION	48		

1. INTRODUCTION

The 18 Curriculum and Assessment Policy Statement subjects which contain a practical component all include a practical assessment task (PAT). These subjects are:

AGRICULTURE: Agricultural Management Practices, Agricultural Technology
 ARTS: Dance Studies, Design, Dramatic Arts, Music, Visual Arts

• SCIENCES: Computer Applications Technology, Information Technology, Technical

Sciences, Technical Mathematics

SERVICES: Consumer Studies, Hospitality Studies, Tourism

TECHNOLOGY: Mechanical Technology, Civil Technology, Electrical Technology,

and Engineering Graphics and Design

A practical assessment task (PAT) mark is a compulsory component of the final promotion mark for all candidates offering subjects that have a practical component and counts 25% (100 marks) of the end-of-year examination mark. The PAT is implemented across the first three terms of the school year. This is broken down into different tasks or a series of smaller activities that make up the PAT. The PAT allows for candidate to be assessed on a regular basis during the school year and it also allows for the assessment of skills that cannot be assessed in a written format, e.g. test or examination. It is therefore important that schools ensure that all candidates complete the practical assessment tasks within the stipulated period to ensure that candidate are resulted at the end of the school year. The planning and execution of the PAT differs from subject to subject.

The PAT allows the teacher to observe applied competence directly and systematically. The PAT comprises the application/performance of the knowledge, skills and values particular to that subject and counts 25% of the total promotion/certification mark out of 400 for the subject.

Any profession requires of its members a thorough grounding in both theory and practice, and MECHANICAL TECHNOLOGY is no exception. It is emphasised that the goal of the practical assessment task is to produce a skilled candidate in each specialisation field. A nation's true wealth is in its manpower and education that should aim to develop the talents of a candidate so that he/she can contribute to the well-being of the society by using and developing scientific and technological resources.

To prepare a candidate in the MECHANICAL TECHNOLOGY'S specialisation fields, one must focus on the following:

- An attitude where the candidate can selectively use ideas, gather evidence and facts and draw logical conclusions to put them to good use creatively and with imagination;
- A capability to express ideas and information clearly by speech, writing, drawing and manufacturing; and
- A willingness and capability to accept and exercise responsibility, to make decisions, and to learn by experience.

Attributes such as these cannot all be achieved in a classroom. A sound knowledge of engineering sciences is essential to equip the MECHANICAL TECHNOLOGY candidate with the necessary practical capabilities for the required processes. Practical training is the application of acquiring essential skills to bridge between trade theory and practice.

Practical application in the workshop must therefore be made an interesting and challenging experience to develop the candidates physically and mentally. The candidates must show their initiative, curiosity and persistence in learning. In order to stimulate and develop self-confidence, the granting of some degree of responsibility during the practical application is very important.

2. TEACHER GUIDELINES

2.1 Administration of the PAT

Teachers are requested to make copies of the different specialisation PAT documents. These documents need to be handed out to the candidates at the beginning of the year. The practical assessment task for Grade 12 is externally set, internally assessed and externally moderated.

Teachers must attach due dates for the different facets of the PAT. (Refer to the CAPS document.) In this manner, candidates can easily assess their progress. It is the responsibility of the teacher to administer formal assessment.

The PAT should be completed within the first three terms. The PAT should be completed under controlled conditions. (Refer to Mechanical Technology SPECIALISATION: CAPS Grade 10–12.)

Teachers MUST compile the manufacturer's specifications of the engines and vehicles available in their workshops before the tasks can commence. See ANNEXURE A as an example of a specification sheet. Candidates must have access to these specification sheets during the tasks. Teachers must perform all the tasks prior to assessing candidates so that the teacher can identify possible challenges and the final results. It provides the teacher with insight into possible challenges regarding equipment or tools and what possible procedures he/she needs to follow in the workshop in order to complete the PAT.

NOTE: The candidate must complete the **procedures** practically. The teacher must record reasons, readings, specifications, etc. provided by the candidate onto the worksheet. TASK 9: The candidate must be provided with WORKSHEET 9.2 during the assessment, as the candidate has to record his/her own measurements and perform the necessary calculations.

2.2 Assessment of the PAT

Frequent and developmental feedback is needed to ensure the necessary guidance and support to the candidates.

Both formal and informal assessment should be conducted to ensure that the embedded skills are developed. Informal assessments must be conducted to monitor the progress of the candidates.

All mark sheets in the candidate's portfolio of evidence must be signed by the teacher, departmental head and moderator (if the candidate was moderated). The formal assessment mark must be recorded on the composite mark sheet. The composite mark sheets MUST be signed by the teacher, departmental head and the principal before external moderation commences.

On completion of each task in each term, the marks for the completed task need to be recorded on the South African School Administration and Management System (SASAMS). Candidates must sign and date the mark sheet on completion of every task.

2.3 Moderation of the PAT

Internal moderation by the departmental head of the school MUST be conducted for each completed task. Evidence of moderation reports must be available in the teacher file and be available as proof for provincial and external moderation. The internal moderator must use the same mark sheets as are available in the candidate's portfolio of evidence whereby the candidate has conducted self-assessment, with formal assessment by the teacher.

Marks must be recorded in the space provided for internal moderation. The marks on the school administration system, captured by the school, must be verified by the moderator against the composite mark sheet. The tasks, assessment criteria and the mark sheets must be presented to the moderator during moderation of the PAT.

The moderator should be able to call on a candidate to explain and demonstrate the functions, principles and skills during the moderation process.

On completion, the moderator will, if necessary, adjust the marks of the group upwards or downwards should he/she deem it necessary.

All tasks must be clearly marked with the correct date, initials, surname and signature of the candidate.

2.4 Consequences of absence/non-submission of tasks

If a candidate's practical assessment task is incomplete or unavailable with a valid reason, the candidate may be given three weeks before the commencement of the final end-of-year examination to submit the outstanding task. Should the candidate fail to fulfil the outstanding PAT requirement, such a candidate will be awarded a zero mark for that PAT component.

A candidate's results are regarded as incomplete if the he/she did not attempt any one of the PAT tasks. Based on the decision of the head of the assessment body, the he/she will be given another opportunity. Should the candidate fail to fulfil the outstanding PAT requirement, the marks for the task(s) will be omitted and the final mark for Mechanical Technology will be adjusted for promotion purposes in terms of the completed tasks. If any tasks are still outstanding, the candidate runs the risk of not being resulted at the end of the year.

2.5	Declaration of Authenticity		
NAME	OF THE SCHOOL:		
NAME	OF CANDIDATE:		
(FULL	NAME(S) AND SURNAME)		
NAME	OF TEACHER:		
	by declare that the project submitted for reviously submitted for moderation.	or assessment is my own, original work and	has not
SIGNA	ATURE OF CANDIDATE	DATE	
	as I know, the above declaration by the or her own.	candidate is true and I accept that the work	offered
SIGNA	ATURE OF TEACHER	DATE	

SCHOOL STAMP

3. CANDIDATE GUIDELINES

Instructions to the candidate

- The PAT consists of a compulsory task in **Automotive**. The compulsory task could be completed during any of the three terms, as set out in this document. (Also see CAPS document.)
- All tasks must be completed according to the timeframes as set out in this document.
- Candidates are requested to actively engage in all practical assessment tasks.
- Candidates who are uncooperative will receive demerits or a zero mark for that particular section of the work.
- Candidates who act unsafely in the workshop and place other candidates in danger will be given additional corrective measures to improve their safety awareness.
- Your tasks must be completed fully by the end of August 2024 in order to be ready for provincial and/or national moderation.
- Your worksheets need to be clearly marked with your name, surname, signature and date of assessment.
- At least one task must be completed each term. The additional compulsory task must be completed during Term 1, Term 2 or Term 3.
- The candidate must be present and available to explain and demonstrate the functions, principles and skills during the moderation.
- Candidates MUST complete the **Declaration of Authenticity** to declare that the tasks they presented for formal assessment are their own work.
- Each term must have a completed task/phase in order to enter the mark on the working mark sheet and the South African School Administration and Management System (SASAMS).

4. SPECIALISATION: AUTOMOTIVE (SPECIFIC)

Term: 1 to 3

Starting date: January 2024 Completion date: August 2024

INTRODUCTION

This section comprises NINE practical tasks.

Choose any THREE tasks from the EIGHT tasks given (TASKS 1-8), namely:

TASK 1: Compression test

TASK 2: Cylinder leakage tests

TASK 3: Exhaust gas analysis

TASK 4: Wheel balancing

TASK 5: Fuel system test

TASK 6: Wheel alignment

TASK 7: Charging system

TASK 8: Computerised diagnostic scanner

The following task is a **COMPULSORY TASK**:

TASK 9: Engine components measurement and calculations

NOTE: TASK 9 IS COMPULSORY.

CONDUCT ANY THREE OF THE EIGHT TASKS GIVEN (TASKS 1-8).

NOTE: The total number of tasks to be completed = 4 (3 choices + 1 compulsory).

The teacher must explain and demonstrate the knowledge and skills that will be assessed during these tasks. Due dates for the completion of the tasks should also be communicated to the candidates.

Activity outcome:

- Candidates apply theoretical knowledge in practice with regard to:
 - Safety, tools, maintenance and systems and control
 - Correct use of tools and equipment
 - Use equipment to diagnose faults in the engine
- These tasks must be done under the supervision of the teacher and the candidates should be assessed while performing these tasks.
- The candidates should answer questions, inform the teacher of the findings and give reasons for certain actions while they are performing these tasks.
- The teacher must record the findings on the worksheet provided.

TASK 1: COMPRESSION TEST

- WORKSHEET 1 Compression Test Procedure
 - Perform the tasks as on WORKSHEET 1.
 - Record the compression readings and reasons on WORKSHEET 1.
 - Use the specification manual or ANNEXURE A to obtain specifications for the engine that you are using to conduct the compression test.
 - Perform a dry and a wet compression test on a four-cylinder, four-stroke petrol engine.

TASK 2: CYLINDER LEAKAGE TEST

- WORKSHEET 2.1 Cylinder Leakage Test Questions
 - o Answer the questions on WORKSHEET 2.1 under examination-controlled conditions.
- WORKSHEET 2.2 Cylinder Leakage Test Procedure
 - o Perform a cylinder leakage test on a four-cylinder, four-stroke petrol engine.
 - Record the causes and reasons on WORKSHEET 2.2.

TASK 3: EXHAUST GAS ANALYSIS

- WORKSHEET 3.1 Exhaust Gas Analysis Questions
 - o Answer the questions on WORKSHEET 3.1 under examination-controlled conditions.
- WORKSHEET 3.2 Exhaust Gas Analysis Procedure
 - Use the specification manual or ANNEXURE A to obtain readings for the engine that you are using to conduct the Exhaust Gas Analysis task.
 - Perform the tasks as on WORKSHEET 3.2.

TASK 4: WHEEL BALANCING

- WORKSHEET 4.1 Wheel Balancing Questions
 - o Answer the questions on WORKSHEET 4.1 under examination-controlled conditions.
- WORKSHEET 4.2 Wheel Balancing Procedure
 - Perform the tasks as on WORKSHEET 4.2.
 - Use a wheel-balancing machine to balance a wheel.

TASK 5: FUEL SYSTEM TEST

- WORKSHEET 5.1 Fuel System Test Questions
 - o Answer the questions on WORKSHEET 5.1 under examination-controlled conditions.
- WORKSHEET 5.2 Fuel System Test Procedure
 - Perform the fuel system test procedures on a fuel system.
 - o Record the findings on WORKSHEET 5.2.

TASK 6: WHEEL ALIGNMENT

- WORKSHEET 6.1 Wheel Alignment Questions
 - o Answer the questions on WORKSHEET 6.1 under examination-controlled conditions.
- WORKSHEET 6.2 Wheel Alignment Procedure
 - o Perform the wheel alignment procedures on a vehicle.
 - Record the findings on WORKSHEET 6.2.

TASK 7: CHARGING SYSTEM

- WORKSHEET 7 Charging System Procedure
 - o Identify components of the alternator.
 - o Perform the charging system test procedures on an engine vehicle.
 - o Test alternator components as on WORKSHEET 7.

TASK 8: COMPUTERISED DIAGNOSTIC SCANNER

- WORKSHEET 8.1 Computerised Diagnostic Scanner Questions
 - Answer the questions on WORKSHEET 8.1 under examination-controlled conditions.
- WORKSHEET 8.2 Computerised Diagnostic Scanner Procedure
 - Perform the computerised diagnostic scanning procedures on a vehicle and record the findings on WORKSHEET 8.2.

COMPULSORY TASK

TASK 9: ENGINE COMPONENTS MEASUREMENT AND CALCULATIONS

- WORKSHEET 9.1 Engine Components Measurement and Calculations Questions
 - o Answer the questions on WORKSHEET 9.1 under examination-controlled conditions.
- WORKSHEET 9.2 Engine Components Measurement and Calculations Procedure
 - o Perform the engine components measurement and calculations procedures on an engine.
 - o Record the findings on WORKSHEET 9.2.

TASK 1: COMPRESSION TEST

WORKSHEET 1.1 – PROCEDURE

CANDIDATE'S NAME AND SURNAME:	

DRY C	COMPRESSION TEST				
1.1.	Conduct a dry compression	test.			
	Р	ROCEDURE		MARK	TOTAL
1.1.1	Obtain the compression pre	essure specification.		1	
1.1.2	Test the battery voltage.	REASON:			
				2	
1.1.3	Start the engine.			1	
1.1.4	Check if engine is at	REASON:			
	operating temperature.			2	
1.1.5	Switch off the engine.			1	
1.1.6	Number the spark plug (HT) leads according to the	cylinder.	1	
1.1.7	Remove the spark plug (HT) leads.		1	
1.1.8	Clean around the spark plugs before removing them.	REASON:		2	
1.1.9	Remove the spark plugs.			4	
1.1.10	Remove the air filter.	REASON:			
				2	
1.1.11	Disable the ignition system;	if not, remove HT lead f	rom coil.	1	
1.1.12	Disconnect the fuel supply.			1	
1.1.13	Fit the compression tester i	n the spark plug hole.		4	
1.1.14	Fully open the throttle valve	·.		4	
1.1.15	Crank the engine to perform	n tests for each cylinder.		4	
1.1.16	Record the readings.	1.	2.	4	
		3.	4.	<u> </u>	
1.1.17	.1.17 Compare the readings. REASON:				
				2	
	Т	OTAL – Dry Compressi	on Test – Procedure	37	

WET C	COMPRESSION T	EST					
1.2	Conduct a wet co	ompression	test on the cyli	nder/cylinders with the	owest r	eading(s).	
		PR	OCEDURE			MARK	TOTAL
1.2.1	Squirt oil into cy	linder onto	piston.			1	
1.2.2	Fit compression	n tester.				1	
1.2.3	Open throttle va	alve fully.				1	
1.2.4	Crank engine 4	to 10 times.				1	
1.2.5	Record the read	ding.				1	
1.2.6	Conclusions aft compression te		REASON:			2	
1.2.7	Replace all the	spark plugs	(initially turn p	lugs in by hand).		2	
1.2.8	Reconnect the					2	
1.2.9	Reconnect the	fuel supply.				1	
1.2.10	Ensure the eng	ine starts.				1	
		TO	TAL – Wet Co	mpression Test - Pro	cedure	13	
TOTAL	Dry Compress	ion Test – P	rocedure			37	
TOTAL	_ – Wet Compress	sion Test – F	Procedure			13	
				GRAND T	OTAL:	50	
			SIGNA	TURES			
Candid	date	Date	0.0.0.	Teacher	Dat	e	
Interna	al moderator	Date		External moderator	Dat	<u></u> е	
l,	ation by the teach Initial & Surname (Te	eacher)	_,declare that t	he Compression Test's	marks a	are	
Signat	ure			Date			

TASK 2: CYLINDER LEAKAGE TEST

WORKSHEET 2.1 – QUESTIONS

CANDIDATE'S NAME AND SURNAME:	
--------------------------------------	--

	QUES	TIONS		MARK
2.1.1	Describe THREE safety precautions and the reason for the precautions that must be adhered to when conducting the cylinder leakage test.			6
	PRECAUTION:	REASON:		
2.1.2	State THREE faults that can develop	o due to cylinder leakages on an	engine.	3
	TOTAL – Cylind	ler Leakage Test – Questions	9	

TASK 2: CYLINDER LEAKAGE TEST

WORKSHEET 2.2 – PROCEDURE

CANDIDATE'S NAME AND SURNAME:	

	DER LEAKAGE TEST			
2.2	Perform the cylinder leakage	•		1
	PR	MARK	TOTAL	
2.2.1	Start the engine.		1	
2.2.2	Check if the engine is at operating temperature.	REASON:	2	
2.2.3	Switch off the engine.		1	
2.2.4	Number the HT spark plug le	eads according to the cylinders.	1	
2.2.5	Remove the HT spark plug le	eads.	1	
2.2.6	Clean around the spark plugs before removing them.	REASON:	2	
2.2.7	Remove the spark plugs.		4	1
2.2.8	Remove the air filter.	REASON:	2	
2.2.9	Turn the engine clockwise at	t the front pulley.	1	
2.2.10	Turn engine until piston is on compression stroke.	REASON:	2	
2.2.11	Turn piston to TDC.		1	1
2.2.12	Lock the crankshaft.		1	
2.2.13	Screw the spark plug hose a	dapter into the spark plug hole.	1	
2.2.14	Ensure compressor pressure	e is sufficient.	1	
2.2.15	Connect the leakage tester to	o the compressor.	1	
2.2.16	Calibrate the leakage tester.	REASON:	2	
2.2.17	Connect leakage tester to sp	park plug hole adapter.	1	
2.2.18	Read the percentage leakage.	REASON:	2	

2.2.19 Check for cause leakage(s) (irres the engine cond	pective of				8	
2.2.20 Replace spark p	lugs (initially	turn spark plu	ıgs in by hand).		4	
2.2.21 Reconnect elect	rical connect	ions, air filter	and fuel supply.		2	
	TO	ΓAL – Cylinde	er Leakage Test – Prod	edure	41	
TOTAL – Cylinder Leak	cage Test – (Questions			9	
TOTAL – Cylinder Leak	kage Test – F	Procedure			41	
GRAND TOTAL:						
		SIGNA	TURES			
Candidate	Date		Teacher	Date)	
Internal moderator	Date		External moderator	Date)	
Declaration by the teach I,	eacher)	_,declare that	the Cylinder Leakage T	est's ma	arks are	
Signature			Date			

TASK 3: EXHAUST GAS ANALYSIS

WORKSHEET 2.1 – QUESTIONS

	QUESTIONS		MARK
3.1.1	What is the purpose of using a gas analyser on an internal combustion engi	ne?	2
3.1.2	State TWO faults that would prompt you to analyse the exhaust gases of an combustion engine.	internal	2
3.1.3	Name FIVE gases that can be analysed by the exhaust gas analyser.		5
3.1.4	State FOUR safety precautions that must be adhered to when conduc exhaust gas analysis.	ting the	4
3.1.5	State FOUR causes of improper and/or incomplete combustion.		4
3.1.6	What is the ideal air-fuel ratio for a spark ignition engine?		1
	TOTAL – Exhaust Gas Analysis – Questions	18	

TASK 3: EXHAUST GAS ANALYSIS

WORKSHEET 3.2 – PROCEDURE

CANDIDATE'S NAME AND SURNAME:	

EXHAUST GAS ANALYSIS					
	sequence. Analyse any TWO of the following gases: oxygen (O2), carbon monoxide (CO) and				
	PROCEDURE	MARK	TOTAL		
3.2.1 Obtain the following ma engine to be tested:	nufacturers' exhaust gas specifications of the				
 Oxygen (O₂) 		3			
Carbon monoxide (CC)))				
 Carbon dioxide (CO₂) 					
3.2.2 Ensure proper ventilation when conducting test.	REASON:	2			
3.2.3 Bring engine to operating temperature.	REASON:	2			
3.2.4 Ensure the filters on ana	Ensure the filters on analyser are clean.				
3.2.5 Check for any exhaust leaks.	EFFECTS OF EXHAUST LEAKS:	4			
3.2.6 Check for any vacuum leaks.	EFFECTS OF VACUUM LEAKS:	3			
3.2.7 Switch on the gas analys	7 Switch on the gas analyser.				
3.2.8 Calibrate the gas analyse	ег.	2			
3.2.9 Ensure that the inlet hose	e is not restricted.	1			
3.2.10 Insert probe into exhaust	pipe.	1			

3.2.11 Take the readings of the exhaust gases. (Choose ANY TWO of the following three gases: CO, O ₂ and CO ₂)						
Obtain CO% results.						
Compare CO% reading	with	CONCLUSION:				
specifications.	** 1 ()				4	
Obtain O₂% results.						
		CONCLUSION:				
Compare O ₂ reading with specifications.	า				4	
Obtain CO₂% results.						
		CONCLUSION:				
Compare CO ₂ reading w specifications.	ith				4	
3.2.12 Switch off the and	alyser				1	
3.2.13 Remove the prob	e fron	n the exhaust pipe.			1	
3.2.14 Remove condens	sate fr	om pipes.			1	
		TOTAL – Exhaus	st Gas Analysis – Proce	dure	32	
						-
TOTAL - Exhaust Gas A	-				18	
TOTAL – Exhaust Gas Analysis – Procedure GRAND TOTAL:				32 50		
GRAND TOTAL.				30		
SIGNATURES						
Candidate	Date		Teacher	Date	7	
Carraraato	Date		rodonor	Date		
Internal moderator	Date		External moderator	Date)	
Declaration by the teacher: I,, declare that the Exhaust Gas Analysis's marks are Initial & Surname (Teacher) captured on the school database.						
Signature			Date			

TASK 4: WHEEL BALANCING

WORKSHEET 4.1 – QUESTIONS

CANDID	ATE'C N	VME VND	SURNAME:	
CANDID	AIESN	AIVIE AND	SURNAME:	

	QUESTIONS	MARK
4.1.1	State FOUR advantages of having the motor vehicle's wheels balanced.	4
]
]
		_
4.1.2	Why is it necessary for the wheel balancing machine to be correctly calibrated?	1
		_
		-
4.1.3	State THREE functions of the wheel-weight hammer.	3
		_
		-
		-
4.1.4	Define static balance of a wheel and tyre assembly.	2
		-
115	Define dynamic balance of a wheel and two accombly	2
4.1.5	Define dynamic balance of a wheel and tyre assembly.	2
		-
		-

4.1.6	FIGURE 4.1.6 shows	Α	В	С	
	different tyre conditions. State the cause of EACH condition (A–C).	A – B – C –	FIGURE 4.1.6		3
4.1.7	State FOUR safety measu		observed when per	forming wheel	4
	balancing.				
		TOTAL - Whee	I Balancing – Que	stions 19	

TASK 4: WHEEL BALANCING

WORKSHEET 4.2 – PROCEDURE

|--|

4.2 Balance a wheel and tyre assembly using the correct procedure.						
PROCEDURE MARK TO	TAL					
4.2.1 Choose the correct rim adapter to mount the wheel for the rim size. 1						
4.2.2 Fit the wheel to the wheel balancer correctly. 1						
4.2.3 Check the tyre for uneven wear.						
4.2.4 Check the tyre for bruises, cracks and damaged side walls.						
4.2.5 Check tyre wear level at the tyre wear indicators (TWI).						
4.2.6 Remove foreign matter from the rim and tyre.						
4.2.7 Check the wheel rim for damaged beads.						
4.2.8 Obtain the wheel rim diameter from the tyre.						
4.2.9 Enter the wheel rim diameter into the wheel balancer. 1						
4.2.10 Obtain tyre pressure specification.						
4.2.11 Check tyre pressure.						
4.2.12 Use the calliper to determine the rim width.						
4.2.13 Enter wheel rim width into the wheel balancer 1						
4.2.14 Use the off-set arm to measure the distance to the wheel.						
4.2.15 Enter the off-set measurement into the wheel balancer.						
4.2.16 Close the safety cover.						
4.2.17 Start the wheel balancer and allow the wheel to spin. 1						
4.2.18 Obtain the imbalance REASON:						
readings on the outer and inner part of the rim.						
Inner reading:						
Outer reading:						

_						
4.2.19	Remove the wh	eel weights.			1	
4.2.20 Close the safety cover.				1		
4.2.21	Start the balance	er and allow wheel to spir	٦.		1	
4.2.22	Obtain the imba	lance readings and its loc	cations on the rim.			
	ading:				2	
Odici ic	,aaiiig	<u>.</u>				
4.2.23	Choose the cor	rect weights.			2	
4.2.24	Fit the weights	correctly.			2	
4.2.25	Re-check the ba	alancing.			1	
4.2.26	Remove the wh	eel if balanced.			1	
		TOTAL – Whe	eel Balancing – Procedu	re	31	
TOTAL	– Wheel Balancii	ng – Questions			19	
TOTAL	– Wheel Balanci	ng – Procedure			31	
GRAND TOTAL				50		
						1
		SIGNA	TURES			
Candida	ate	Date	Teacher	Da	ite	
Internal	moderator	Date	External moderator	Da	ite	
Declaration by the teacher: I,, declare that the Wheel Balancing's marks are Initial & Surname (Teacher) captured on the school database.						
Signatui	re		Date			

TASK 5: FUEL SYSTEM TEST

WORKSHEET 5.1 – QUESTIONS

	QUESTIONS	MARK
5.1.1	State the function of the fuel system tester.	2
5.1.2	Name TWO methods by which fuel pumps are driven on an internal combustion engine.	2
5.1.3	State the function of a fuel filter.	1
5.1.4	State TWO functions of a check valve in the fuel system.	2
5.1.5	State THREE possible faults and their corrective measures for low fuel pressure.	6
	FAULT CORRECTIVE MEASURE	
	TOTAL – Fuel System Test – Questions 13	

TASK 5: FUEL SYSTEM TEST

WORKSHEET 5.2 – PROCEDURE

5.2	Conduct the Fuel Syster	m Test in th	e correc	t sed	quence.			
		PROCEDU	JRE				MARK	TOTAL
5.2.1	Obtain the fuel pressu	re specifica	tions:				3	
5.2.2	Work in a well-ventilate	ed area.					1	
5.2.3	Ensure there is a fire e	extinguisher	nearby.				1	
5.2.4	Obtain the correct ada	ptor in acco	ordance	with	the hose size	ze.	1	
5.2.5	Ensure that the tester	can read th	e pressu	ıre o	f the fuel sy	stem.	1	
5.2.6	Ensure that the rubber	hose on th	e tester	is no	ot perished.		1	
5.2.7	Ensure that the tester'	s pressure	relieve v	alve	is working p	properly.	1	
5.2.8	Fit fuel pressure tester to fuel line between the pump and engine.						3	
5.2.9	Switch ignition on until	maximum	fuel pres	ssure	is reached		1	
5.2.10	Switch ignition off afte	n ignition off after the full pressure is reached.					1	
5.2.11	Check fuel pressure on gauge.	•					3	
5.2.12	Release pressure and	connect to	fuel hos	e on	engine side	e as well.	2	
5.2.13	Switching ignition on a full pressure is reache		the				2	
5.2.14	Check fuel pressure on gauge.		,				2	
5.2.15	Check regulator vacuum hose for wetness.						2	
5.2.16	Check for leaking injectors.	1.	2.		3.	4.	4	
	TOTA	L - Fuel S	ystem P	ress	sure Test –	Procedure	29	

5.3	Check the fuel delivery rate.		
	FUEL DELIVERY RATE – PROCEDURE	MARK	TOTAL
5.3.1	Obtain the delivery rate (fuel flow rate) specifications.	1	
5.3.2	Release fuel pressure from fuel system.	2	
5.3.3	Disconnect fuel hose.	1	
5.3.4	Insert fuel hose into measuring beaker.	1	
5.3.5	Switch ignition on.	1	
5.3.6	Measure the fuel delivery volume after ONE minute.	2	
	TOTAL – Fuel Delivery Rate – Procedure	8	

TOTAL – Fuel System Test – Questions	13	
TOTAL – Fuel System Pressure Test – Procedure	29	
TOTAL – Fuel Delivery Rate – Procedure	8	
GRAND TOTAL:	50	

SIGNATURES				
Candidate	Date	Teacher	Date	
latemal and another	Data	Estamal made a	Data	
Internal moderator	Date	External moderator	Date	

Declaration by the teacher:	
I,	,declare that the Fuel System Test's marks are
Signature	Date

TASK 6: WHEEL ALIGNMENT

WORKSHEET 6.1 – QUESTIONS

CANDIDATE'S NAME AND SURNAME:

QUESTIONS	MARK	
6.1.1 What is the purpose of toe-out on turns?	2	
6.1.2 Draw a neat, labelled sketch of toe-in on a vehicle.	3	
6.1.3 Which tool is used to measure the toe angles on a vehicle?	1	
6.1.4 Label A to B in FIGURE 6.1.4 of the front suspension below.	2	
FIGURE 6.1.4		
A.		
B.		
TOTAL – Wheel Alignment – Questions	8	

TASK 6: WHEEL ALIGNMENT

WORKSHEET 6.2 – PROCEDURE

CANDIDATE'S NAME AND SURNAME:	

6.2	Conduct the wheel alignment procedure using the bubble gauge in the co				orrect seque	ence.	
		Р	ROCEDURI	E		MARK	TOTAL
6.2.1	Do ANY SEVEN of the pre-checks on the vehicle.					7	
6.2.2	Obtain wheel alignment specifications.	(a) Ca (b) Ca (c) KF	amber			3	
6.2.3	Place vehicle on turntables.					5	
6.2.4	Taking the wheel alignment CAMBER reading.					3	

6.2.5	State if the camber	1		
6.2.6	Advise on how to co	prect the camber.	1	
	Reading the wheel alignment CASTER and KPI angles on the LEFT wheel.	CASTER KPI	11	
	Reading the wheel alignment CASTER and KPI angles on the RIGHT wheel.	CASTER KPI	11	
		TOTAL – Wheel Alignment – Procedure	42	

TOTAL – Wheel Alignment – Questions	8	
TOTAL – Wheel Alignment – Procedure	42	
GRAND TOTAL:	50	

SIGNATURES				
Candidate	Date	Teacher	Date	
Internal moderator	Date	External moderator	Date	

Declaration by the teacher:	
I, Initial & Surname (Teacher) captured on the school database.	_,declare that the Wheel Alignment's marks are
Signature	Date

TASK 7: CHARGING SYSTEM

WORKSHEET 7 - PROCEDURE

7. Perform the following tasks regarding the charging system.				
CHARGING SYSTEM (ALTERNATOR)	MARK	TOTAL		
7.1 Identify any SEVEN components (A to I) of the alternator in FIGURE 7.1.	7			
A T C E F				
FIGURE 7.1				
A - F -				
B - G - H -				
D - I -				
E -				
7.2 Test the charging system on a vehicle.				
PROCEDURE	MARK	TOTAL		
7.2.1 Select DC voltage on the multimeter.				
7.2.2 Obtain the manufacturer's specifications for the vehicle's charging system.	2			
7.2.3 Check for loose electrical connections.	1			
7.2.4 Check the fan belt.				
7.2.5 Use the multimeter to measure the battery voltage at idling speed without load.	2			
7.2.6 Use the multimeter to measure the battery voltage at idling speed with load.	2			
7.2.7 Report on voltage drop between readings at idling speed, with and without load.	2			
TOTAL – Charging System – Procedure	19			

	ALTERNATOR TESTING – PROCEDURE	MARK	TOTAL
			IOTAL
7.3.1	Select continuity (buzzer) on the multimeter.	1	
	the six diodes on the rectifier.		
7.3.2	Connect the multimeter to both sides of the diodes.	6	
7.3.3	Report on condition of diodes.	6	
Check	stator for continuity.		
7.3.4	Connect the multimeter to a different pair of each of the three winding ends respectively.	3	
7.3.5	Report on continuity of stator windings.	3	
Check	stator for earth leakage.		
7.3.6	Connect the multimeter to the stator framework and the other end to any of the three windings ends.	1	
7.3.7	Report on earth leakage of stator windings.	1	
Check	rotor for continuity.		
7.3.8	Connect multimeter to both slip rings.	1	
7.3.9	Report on continuity of rotor windings.	1	
7.3.10	Check if slip rings are connected properly to rotor windings.	2	
7.3.11	Check slip rings for wear.	1	
Check	rotor for earth leakage.		-
7.3.12	Connect multimeter to rotor winding and rotor framework (poles).	1	
7.3.13	Report on earth leakage of rotor windings.	1	
7.3.14	End bracket/Cover for wear.	1	
7.3.15	Check front bearing and rear bearing.	2	
	TOTAL – Alternator Testing – Procedure	31	
TOTAL	. – Charging System – Procedure	19	
	. – Alternator Testing – Procedure	31	1
	GRAND TOTAL	50	

SIGNATURES				
Candidate	Date	Teacher	Date	
Internal moderator	Date	External moderator	Date	

Declaration by the teacher:	
l, Initial & Surname (Teacher) captured on the school database.	_,declare that the Charging System's marks are
Signature	Date

TASK 8: COMPUTERISED DIAGNOSTIC SCANNER

WORKSHEET 8.1 – QUESTIONS

		QUESTIONS	MARK
8.1.1	What	do the following abbreviations stand for?	
	(a)	OBD	1
	(b)	ECU	1
	(c)	TCU	1
	(d)	MAF	1
	(e)	TPS	1
8.1.2	Interp	oret the following fault code: P0171	
	(a)	P	1
	(b)	0	1
	(6)		'
	(c)	1	1
	(d)	71	1
8.1.3	State	TWO manufacturer's specifications required to set up an OBD scanner.	2
			-
			_

8.1.4	State the FOUR basic functions of an OBD scanner.		4
8.1.5	Name FIVE systems that the OBD scanner can detect.		5
			_
			-
			-
			-
	TOTAL - Computerised Diagnostic Scanner - Questions	20	

TASK 8: COMPUTERISED DIAGNOSTIC SCANNER

WORKSHEET 8.2 – PROCEDURE

CANDIDATE'S NAME AND SURNAME:	

COMPUTERISED DIAGNOSTIC SCANNER					
8.2	Conduct a Computerised Diagnostic Test on a vehicle using the OBD-II scanner.				
		PROCEDURE	MARK	TOTAL	
8.2.1	Check for any of the SIX obvious problems listed:		6		
8.2.2	Obtain the VIN of the	vehicle.	1		
8.2.3	Obtain the make and model of the vehicle.		1		
8.2.4	Locate the car's OBD-II port.		1		
8.2.5	Gain access to the car's OBD-II port.		1		
8.2.6	Plug the diagnostic tool into the OBD-II port.		2		
8.2.7	Access the diagnostic scanner.		2		
8.2.8	Enter the vehicle's details into the scanner.		2		
8.2.9	Turn on the vehicle's ignition.		2		
8.2.10	0 Select the system to be scanned.		2		
8.2.11	Perform a diagnostic	scan.	2		
8.2.12	12 Record any diagnostic trouble codes.		2		
8.2.13	13 Clear the trouble codes and restart the diagnostic scan.		2		
8.2.14	14 Read the trouble codes.				
8.2.15	5 Interpret the trouble codes.				
8.2.16	2.16 Make a diagnosis.		2		
	TOTAL – C	omputerised Diagnostic Scanner – Procedure	30		

TOTAL – Computerised Diagnostic Scanner – Questions	20	
TOTAL – Computerised Diagnostic Scanner – Procedure	30	
GRAND TOTAL	50	

SIGNATURES			
Candidate	Date	Teacher	Date
Internal moderator	Date	External moderator	Date

Declaration by the teacher:	
I,Initial & Surname (Teacher) are captured on the school database	_,declare that the Computerised Diagnostic Scanner's marks e.
Signature	Date

TASK 9: ENGINE COMPONENTS MEASUREMENTS AND CALCULATIONS (COMPULSORY) WORKSHEET 9.1 – QUESTIONS

	QUESTIONS	MARK
9.1.1	Explain what is meant by swept volume.	2
9.1.2	Define clearance volume.	2
<u> </u>		
9.1.3	What do you understand by the term compression ratio?	2
9.1.4	Describe THREE methods to raise the compression ratio in an engine.	3
9.1.5	Describe TIDEE methods to lower the compression ratio in an engine	
9.1.5	Describe THREE methods to lower the compression ratio in an engine.	3

9.1.6	Obtain the stroke specification sheet	length and bore diameter for a given engine from the to calculate the compression ratio.	
	Stroke length	= mm	8
	Bore diameter	= mm	
	Clearance volume	= 35 cm ³	

9.1.7	The following data was recorded during a test carried out on a four-cylinder four-stroke petrol engine:	
	Crankshaft revolutions: 2 000 r/min Mean effective pressure: 900 kPa Cylinder bore diameter: 84 mm Stroke length: 86 mm	10
	Determine the following by means of calculations:	
	(a) Indicated power in kW (b) Mechanical efficiency if the brake power is 22 kW (2)	

9.1.8	What equipment is used to measure the mean effective pressure during the power stroke?	developed	1
9.1.9	Name TWO types of dynamometers used to measure brake power.		2
	TOTAL – Engine Components Measurement and Calculations – Questions	33	

TASK 9: ENGINE COMPONENTS MEASUREMENT - PROCEDURE

WORKSHEET 9.2 - ENGINE COMPONENTS MEASUREMENT

CANDIDATE'S NAME AND SURNAME:

ENGINE COMPONENTS MEASUREMENT

9.2 Measure the cylinder bore and crankshaft journal of an internal combustion engine. Answer the questions that follow.

PROCEDURE

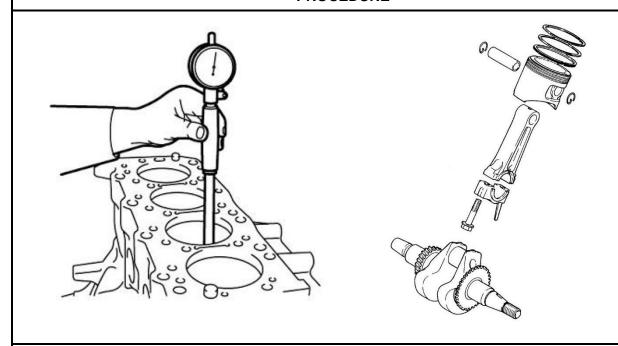
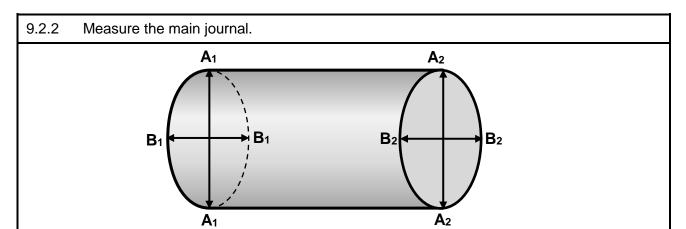



FIGURE 9.2: ENGINE BLOCK, CRANKSHAFT AND CONROD ASSEMBLY

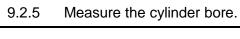

9.2.1 Obtain specifications with correct SI units for the following.				
COMPONENT	MARK	TOTAL		
Big-end journal		1		
Main journal		1		
Cylinder bore diameter		1		
Stroke length		1		
Big-end bearing clearance		1		
Mains bearing clearance		1		
	TOTAL - Engine Specifications	6		

FIGURE 9.2.2: MAIN JOURNAL

DIMENSION	MEASUREMENT	MARK	TOTAL
A ₁		5	
A_2		5	
B ₁		5	
B ₂		5	

9.2.3 Calcula	te the ovality.		
$A_1 - B_1 =$		2	
$A_2 - B_2 =$		2	
9.2.4 Calcula	te the taper.		
$A_1 - A_2 =$		2	
$B_1 - B_2 =$		2	
ТОТА	L – Engine Main Journal Measurement and Calculations	28	

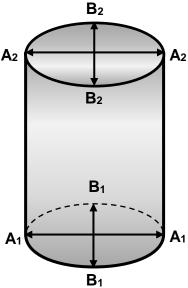


FIGURE 9.2.5: CYLINDER BORE

DIMENSION	MEASUREMENT	MARK	TOTAL
A ₁		5	
A ₂		5	
B ₁		5	
B ₂		5	
Stroke length		5	

9.2.6 Calculate the ovality.

$A_1 - B_1 =$	2	
$A_2 - B_2 =$	2	

9.2.7 Calculate the taper.

$A_1 - A_2 =$		2	
$B_1 - B_2 =$		2	
то	OTAL – Engine Cylinder Measurement and Calculations	33	

TOTAL – Engine Components Measurements and Calculations – Questions	33	
TOTAL – Engine Specifications	6	
TOTAL – Engine Main Journal Measurements and Calculations	28	
TOTAL – Engine Cylinder Measurements and Calculations		
GRAND TOTAL	100	

SIGNATURES					
Candidate	Date	Teacher	Date		
Internal moderator	Date	External moderator	Date		
internal moderator	Date	External moderator	Date		

Declaration by the teacher:	
I,Initial & Surname (Teacher)	,declare that the Engine Components Measurements and
Calculations' marks are capture	ed on the school database.
Signature	Date

5. COMPOSITE MARK SHEET - TOTALS

MECHANICAL TECHNOLOGY											
Д				UTOMOTIVE							
COMPOSITE MARK SHEET - TOTALS											
GRADE		1:	2	DATE							
				CANDIDATES							
PHASES	MARKS										
		1	2	3	4	5	6	7	8	9	10
TASK:	50										
TASK:	50										
TASK:	50										
TASK 9 COMPULSORY	100										
TOTAL:	250										
TOTAL PAT MARK:	100										
NAME AND SIGNATURE OF TEACHER											
NAME AND SIGNATURE OF TECHNICAL DEPARTMENTAL HEAD											
NAME AND SIGNATURE OF PRINCIPAL											
NAME AND SIGNATURE OF INTERNAL MODERATOR											
NAME AND SIGNATURE OF EXTERNAL MODERATOR											

SCHOOL STAMP

6. ANNEXURE A – SPECIFICATIONS SHEET

ENGINE:			
Туре			
Bore			
Stroke			
Idling speed			
Power max.			
Torque max.			
Compression ratio			
Oil pressure			
Firing order			
Radiator cap pressure			
Thermostat opening pressure			

TRANSMISSION:	
Clutch type and diameter	
Gearbox	
Rear axle type	
Final drive type and ratio	
Speed in top gear per 1 000 r/min	

CAPACITIES:		
Sump without oil filter		
Gearbox		
Final drive		
Cooling system		
Fuel tank		

FUEL:			
Fuel system			
Aspiration			
Consumption			
CO emissions			
CO ₂ emissions			
O ₂ emissions			
Fuel type			

PISTONS AND RINGS:	
Piston clearance in bore	
Over-sizes	
Number of rings	
Groove gap	
Ring gap in bore	

VALVES:	
Working clearance	
Inlet	
Exhaust	
Timing	
Inlet opens	
Inlet closes	
Timing	
Exhaust opens	
Exhaust closes	
Valve spring free length	
Valve spring rate	
Valve seat angle	
Valve lift	
Cam height	

IGNITION AND ELECTRICAL:		
Distributor type		
Stroboscopic setting		
Position of timing marks		
Spark plugs		
Spark plugs gaps		
Battery		
Alternator		
Charging rate		
Regulator type		

CRANKSHAFT:	
Main bearings	
Under-sizes	
Clearance	
Big end	
Under-sizes	
Clearance	
Small end bushes	

TORQUE SETTINGS:		
Flywheel		
Cylinder head		
Big ends bearings		
Main bearings		
OHC bearing caps		

7. CONCLUSION

On completion of the practical assessment task candidates should be able to demonstrate their understanding of the industry, enhance their knowledge, skills, values and reasoning abilities as well as establish connections to life outside the classroom and address real-world challenges. The PAT furthermore develops the candidate's life skills and provides opportunities for candidates to engage in their own learning.