

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY: AUTOMATIVE

EXEMPLAR 2018

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 18 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	A✓	(1)
1.2	B✓	(1)
1.3	B✓	(1)
1.4	B✓	(1)
1.5	C✓	(1)
1.6	C✓	(1) [6]

DBE/2018

QUESTION 2: SAFETY (GENERIC)			
2.1	Machine safety rule: Switch machine off after use. ✓	(1)	
2.2	Drill press safety precautions: Clamp the work piece securely to the table and do not hold it by hand. ✓	(1)	
2.3	 Hydraulic press safety rules: Predetermined pressure must not be exceeded. ✓ Pressure gauge must be tested regularly and replaced if malfunction occurs. ✓ The platform must be rigid and square to the cylinder. ✓ Objects to be pressed must be placed in suitable jigs. ✓ Ensure that the direction of pressure is always at 90° to the object. ✓ Only prescribed equipment must be used. ✓ (Any 2 x 1) 	(2)	
2.4	 Reasons for wearing surgical gloves: To prevent HIV/Aids or any blood related infections. ✓ To prevent contamination of the open wounds. ✓ 	(2)	
2.5	 Gas cylinder safety precautions: Always store and use gas cylinders in an upright position. ✓ Never stack cylinders on top of one another. ✓ Do not bang or work on the cylinders. ✓ Never allow cylinders to fall. ✓ No oil and grease should come into contact with gas cylinders or fittings. ✓ Keep the caps on the cylinders for protection. ✓ (Any 2 x 1) 	(2)	
2.6	 Responsibility of employer: Provide and maintain working systems, work area, equipment and tools in a safe condition. ✓ Eliminate or reduce any hazard or potential hazard. ✓ Produce, handle, store and transport goods safely. ✓ Ensure that every person employed complies with the requirements of this Act. ✓ Enforce measures if necessary in the interest of health and safety. ✓ Appoint a person who is trained and who have the authority to ensure that employee take precautionary measures. ✓ (Any 1 x 1) 	(1)	
2.7	 Responsibility of employee: Pay attention to his/her own and other people's health and safety. ✓ Co-operate with the employer regarding the Act. ✓ Carry out a lawful order given to them. ✓ Report any situation that is unsafe or unhealthy. ✓ Report all incidents and accidents. ✓ Do not interfere with any safety equipment or misuse such equipment. ✓ 	(1)	
	• Obey all safety rules. ✓ (Any 1 x 1)	(1) [10]	

QUESTION 3: MATERIALS (GENERIC)

3.1 Metal tests:

3.3

3.1.1 Filing test:

Filing should be done on the tip or near the edge \checkmark of the material to establish the relative hardness. \checkmark (2)

3.1.2 Machining test:

This test is used on two unknown samples, identical in appearance and size, which is cut with a machine tool at the same speed and feed. \checkmark The ease of cutting should be compared and the chips observed for heating colour and curl. \checkmark (2)

3.2 **Sound test on the steel:**

3.2.1	High carbon steel (Hard): Loud and clear ✓✓	(2)
3.2.2	Low carbon steel (Soft): Dull sound ✓✓	(2)
Heat tre	eatment processes on steel:	
3.3.2	Case hardening: To produce a hard case ✓ over a tough core. ✓	(2)

3.3.3 Hardening: To enable the steel to resist wear \checkmark and indentation \checkmark (2)

3.3.5	Normalising:	
	To relieve \checkmark the internal stress \checkmark produced by machining.	(2)
		[14]

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	D✓	(1)
4.2	B✓	(1)
4.3	D✓	(1)
4.4	D✓	(1)
4.5	A✓	(1)
4.6	C✓	(1)
4.7	D✓	(1)
4.8	C✓	(1)
4.9	C✓	(1)
4.10	D✓	(1)
4.11	A✓	(1)
4.12	C✓	(1)
4.13	A✓	(1)
4.14	A✓	(1)

[14]

DBE/2018

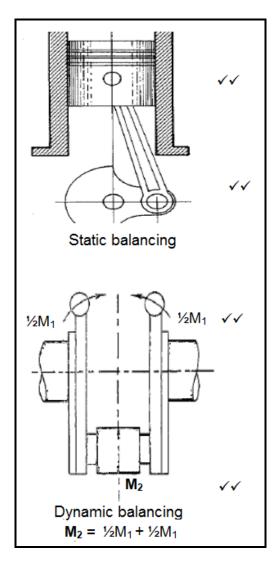
QUESTION 5: TOOLS AND EQUIPMENT (SPECIFIC)

5.1	EasyHighEasy	 terised diagnostic scanner: to retrieve vehicle identification number. ✓ reliability and accurate. ✓ to read on its LCD display. ✓ diagnostic terminal fits in one direction only. ✓ (Any 3 x 1) 	(3)
5.2	WherWher	s for balancing wheels: n a tyre is replaced or repaired. ✓ n a balancing weight is moved or falls off. ✓ n vibration on the steering wheel is experienced. ✓	(3)
5.3	Tools:		
	5.3.1	Wheel balancer: To balance wheels to eliminate ✓ vibrations ✓ of vehicle wheels.	(2)
	5.3.2	Gas analyser: To analyse exhaust gases \checkmark to determine efficiency of the combustion process. \checkmark	(2)
	5.3.3	Compression tester: To determine whether the compression \checkmark (pressure during compression stroke) in the cylinder is according to specification. \checkmark	
	5.3.4	Pressure tester: To test \checkmark if there are any leaks \checkmark in a system.	(2)
	5.3.5	Wheel alignment equipment: To align the four wheels ✓ of a motor vehicle to ensure maximum tyre life and optimal road holding.✓	(2)
5.4	ReduImproReduElimin	s of well-balanced wheels: ces tyre wear ✓ oves fuel efficiency ✓ ces stress in vehicle parts ✓ nates vibrations ✓ oves road holding ✓ (Any 2 x 1)	(2)

DBE/2018

5.5 Wheel dimensions:

5.6


	lancing: ancing is the equal distribution of all weights ✓ around the axis of the rotation plane. ✓	(2) [23]
5.5.3	Diameter: It is the outside diameter of the rim. ✓	(1)
5.5.2	Width: Width of the wheel at the wheel flanges, measured with a outside caliper. \checkmark	(1)
5.5.1	Offset: The distance between the wheel balancer and the inner plane of the wheel rim. \checkmark	(1)

QUESTION 6: ENGINES (SPECIFIC)

6.1	 Causes of vibration: Mechanical unbalance because of unbalanced moving parts. ✓ Power unbalance because of disproportionate pressure on the pistons and crankshaft. ✓ 	(2)
6.2	Angle of balancing weight: 180° √√	(2)
6.3	Dynamic balancing:	

Balancing in all planes \checkmark while the crankshaft is in motion. \checkmark (2)

6.4 **Static and dynamic balancing:**

(8)

(2)

6.5 **Mechanical balance:**

To overcome the differences \checkmark that causes unbalance. \checkmark

6.6	Cranksha Crank Counte Flywhe	arms ✓ er weights ✓		(3)
6.7	Vibration To counte	damper: eract the twisting ✓ of the crankshaft during the powe	r stroke. ✓	(2)
6.8	NumberPositioFiring of	aft layout: er of cylinders ✓ n of cylinders ✓ order ✓ periods ✓		(4)
6.9	Firing or	der:		
	6.9.1	1, 3, 4, 2 ✓		(1)
	6.9.2	1, 4, 3, 2 ✓		(1)
	6.9.3	1, 5, 3, 6, 2, 4 🗸 or 1, 4, 2, 6, 3, 5 🗸	(Any 1 x 1)	(1) [28]

(2)

QUESTION 7: FORCES (SPECIFIC)

7.1 **Compression ratio:**

The compression ratio of an internal combustion engine is the ratio of compression of the inlet charge during the compression stroke \checkmark to the total volume of the cylinder. \checkmark

7.2 **Compression ratio:**

7.2.1 Swept volume:

Swept Volume =
$$\frac{\pi D^2}{4} \times L$$
 \checkmark
= $\frac{\pi (8,0)^2}{4} \times 9,0$ \checkmark
= 452,39 cm³ \checkmark (3)

7.2.2 Compression ratio:

Compression Ratio =
$$\frac{SV + CV}{CV}$$

 $CV = \frac{SV}{CR - 1} \checkmark$
 $= \frac{452,39}{9,5 - 1} \checkmark$
 $= \frac{452,39}{8,5}$
 $= 53,22 \text{ cm}^3 \checkmark$ (3)

7.2.3 **New bore diameter:**

Compression Ratio =
$$\frac{SV}{CV} + 1$$

 $10-1 = \frac{SV}{53,22}$
 $\frac{\pi D^2}{4} \times L = 53,22 \times 9$
 $D^2 = \frac{53,22 \times 9 \times 4}{\pi \times 9}$
 $= 67,76 \text{ cm}^3$
 $D = \sqrt{67,76}$
 $= 8,23 \text{ cm}$
 $= 82,3 \text{ mm}$

(6)

7.3 **Power:**

7.3.1

Torque: Torque=force×radius

Where : Force=765-15 N =750N ✓

and
Radius =
$$\frac{820 + 20}{1000 \times 2}$$

= 0,42 m \checkmark

$$T = F \times r$$

=750×0,42 Nm
=315 Nm ✓

7.3.2 IndicatedPower = PLANn

Where :

$$P=800 \text{KPa} \checkmark$$

$$L = \frac{150}{1000}$$

$$=0,15 \text{m} \checkmark$$

$$A = \frac{\text{HD}^{2}}{4} \checkmark$$

$$= \frac{\text{HO},11^{2}}{4}$$

$$= 9,5 \times 10^{-3} \text{ m}^{2} \checkmark$$

$$N = \frac{1200}{60 \times 2}$$

$$= 10 \text{ r/s} \checkmark$$

$$n = 4 \text{ cylinders} \checkmark$$
Indicated Power = PLANn \checkmark
$$= (800) \times (0,15) \times (9,5 \times 10^{-3}) \times (10) \times (4) \checkmark$$

$$= 45,6 \text{ kW} \checkmark$$
(9)

(3)

7.3.3 Brake Power =
$$2\pi \times N \times T$$
 \checkmark
= $2\pi 20 \times 315$ W \checkmark
= $39584,07$ W \checkmark
= $39,58$ kW \checkmark (4)

7.3.4 Mechanical Efficiency =
$$\frac{BP}{IP}$$
 100%
= $\frac{39,58}{45,6} \times 100\%$
= 86,80% \checkmark (2)
[32]

QUESTI	ON 8: MAINTENANCE (SPECIFIC)		
8.1	 Oil pressure test: Because the oil pressure warning light is on. ✓ To determine the location of an oil leak. ✓ 		(2)
8.2	 Reasons for high CO (carbon monoxide) reading: Rich air fuel mixture ✓ Incorrect idle speed ✓ Clogged air filter ✓ Faulty choke ✓ 	(Any 2 x 1)	(2)
8.3	 Reasons for high HC (hydro-carbon) reading: Incorrect ignition timing ✓ Faulty high-tension leads ✓ Low compression ✓ Very rich mixture ✓ Leaking gasket ✓ Worn valves ✓ Worn valve lifter ✓ Worn rings and piston ✓ 	(Any 3 x 1)	(3)
8.4	 Reasons for compression lost: Worn cylinder ✓ Cracked cylinder ✓ Worn rings ✓ Worn piston ✓ Cracked piston ✓ Leaking inlet valve ✓ Leaking exhaust valve ✓ Leaking cylinder head gasket ✓ 	(Any 3 x 1)	(3)
8.5	 Wet compression test-procedure: Add a little oil to the cylinder which has a low reading. ✓ Execute the compression test as for dry test; if the reading indicates that the piston rings are worn. ✓ 	j increases it	(2)
8.6	 Cooling-system pressure tester: Run engine to heat up the cooling system. Fit radiator press radiator. ✓ Pressurise the cooling system. (118 kPa). ✓ Watch the pressure, if it drops there is a leak. ✓ Make a visual check for leaks. ✓ Install radiator cap to tester and pump the tester. The release air at its rated pressure. ✓ 		

- Check the rubber seal for cracks and damages. \checkmark
- Check the vacuum valve for free movement and operation. ✓

8.7 **Compression test:**

8.7.1	 High tension lead: The ignition system will be disabled. ✓ To prevent electrical shock. ✓ (Any 1 x 1) 	(1)
8.7.2	 Fuel injectors disconnected: To prevent unburned fuel entering the exhaust system. ✓ To prevent fuel entering the tester. ✓ (Any 1 x 1) 	(1)
8.7.3	Throttle valve fully open: To let the correct amount of air into the cylinder to obtain a correct reading. \checkmark	(1)
8.7.4	 Record the readings: To compare readings with the specifications. ✓ To determine the reading differences between the cylinders. ✓ (Any 1 x 1) 	(1) [23]

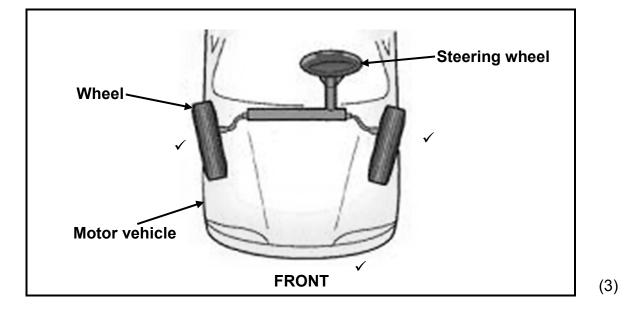
QUESTION 9: SYSTEMS AND CONTROL (AUTOMATIC GEARBOX) (SPECIFIC)

9.1	Transmission': The transmission is a device that is connected to the back of the engine and it transmits the power from the engine to the drive wheels. ✓	✓ (2)
9.2	Types of transmission layout:	
	9.2.1 Rear-wheel drive ✓	(1)
	9.2.2 Front-wheel drive ✓	(1)
9.3	Function of the torque converter: To multiply the engine torque automatically ✓ according to road and enging speeds. ✓	ne (2)
9.4	 Components of the torque converter: Impeller (pump) ✓ Reactor (stator) ✓ Turbine ✓ 	(3)
9.5	 Advantages of fluid coupling: Acceleration and the transfer of torque is smoother as vehicle pu away. ✓ It does not require a foot-operated clutch pedal. ✓ It serves as a flywheel. ✓ It helps to reduce power unbalance. ✓ (Any 3 x 4) 	
9.6	Rotate in the same direction as the pump: One-way clutch \checkmark	(1)
9.7	 Gear ratio in relation to the road speed: Higher gear ratio decreases the engine speed. ✓ Low gear ratio increases the engine torque. ✓ 	(2)
9.8	Locking sequence of the epicyclic gear trains: By hydraulic pressure operating brake bands and/or multiplate clutches. ✓	(1)
9.9	Kickdown in automatic gearbox: Activates the change down for rapid acceleration. ✓	(1)
9.10	Mechanical systems in automatic transmission: Planetary gear system ✓	(1) [18]

(2)

QUESTION 10: SYSTEMS AND CONTROL (AXLES, STEERING GEOMETRY AND ELECTRONICS) (SPECIFIC)

10.1 **Dynamic balance of a wheel and tyre assembly:**


This is the equal distribution of all weights \checkmark around the axis of rotation in all rotation parts \checkmark

10.2 **Preliminary wheel alignment check:**

- Check tyre condition and size. ✓
- Check tyre pressure. ✓
- Check the run out on rim. ✓
- Check wheel bearing for play. ✓
- No spring sag (vehicle must stand level). ✓
- Check suspension rubbers. ✓
- Check shock absorbers. ✓
- Check suspension springs. ✓
- Check if steering gear if in good order and centralised. ✓
- Check steering linkages. ✓
- Check ball-joint or king pin movement. ✓
- Ensure that the wheels are balanced. ✓

(Any 5 x 1) (5)

10.3 **Toe-in:**

10.4

Camber:

	10.4.1	Wheel alignment angle: Positive ✓ camber angle ✓	(2)
	10.4.2	Camber angle: A – Wheel \checkmark B – Perpendicular line \checkmark C – Centre line of wheel \checkmark D – Positive camber angle \checkmark	(4)
	10.4.3	Camber angle definition: Positive camber angle is the outward tilt \checkmark of the wheel at the top away from the vehicle \checkmark when viewed from the front. \checkmark	(3)
10.5	Purpose of the speed control system: To control the throttle and to keep the vehicle speed constant. ✓		(1)
10.6	 Advantage of speed control: Driver fatigue is decreased because it is not necessary to control the throttle with his/her foot. ✓ The set speed is controlled. ✓ Improved fuel consumption. ✓ A consistently controlled speed prevents speeding fines. ✓ (Any 1 x 1) 		(1)
10.7	 Disadvantage of speed control: The system is expensive. ✓ High maintenance costs if the system becomes faulty. ✓ (Any 1 x 1) 		(1)
10.8	Diode: To change alternating current to direct current. ✓		(1)
10.9	To prostatorTo prostator	and stator windings: by ide a core that concentrates the magnetic lines of force onto the windings. \checkmark by ide a coil into which voltage is induced which is used to charge attery. \checkmark (Any 1 x 1)	(1)

10.10 **Operation of electric fuel pump:**

- As soon as ignition is switched on, the battery current flows through the electromagnet's coil windings and through the closed contact points to the earth. ✓
- The current flow in the coil windings produces a magnet field which magnetises the soft iron core of the electromagnet. ✓
- The armature on the diaphragm is attracted to the electromagnet moving the diaphragm down against the pressure of its spring. ✓
- This downwards movement of the diaphragm creates a partial vacuum in the float chamber causing the outlet valve to close more tightly. ✓
- Atmospheric pressure outside and inside the fuel tank allows petrol to flow through the inlet valve into the float chamber. ✓
- When the diaphragm is about to complete its downward stroke a trip mechanism opens the contact points and this interrupts the current flow. ✓
- The electromagnet then loses its attraction force and the diaphragm is pushed upwards by the diaphragm spring and the inlet valve closes. ✓
- Fuel is forced out of the float chamber through the outlet valve to the fuel line. ✓

(8) **[32]**

TOTAL: 200