

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKING GUIDELINES

.

MARKS: 200

These marking guidelines consist of 18 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	A✓	(1)
1.2	B✓	(1)
1.3	B✓	(1)
1.4	B✓	(1)
1.5	C✓	(1)
1.6	C✓	(1) [6]

QUESTION 2: SAFETY (GENERIC)

2.1	Machine safety rule: Switch machine off after use. ✓	(1)
2.2	Drill press safety precautions: Clamp the work piece securely to the table and do not hold it by hand. \checkmark	(1)
2.3	 Hydraulic press safety rules: Predetermined pressure must not be exceeded. ✓ Pressure gauge must be tested regularly and replaced if malfunction occurs. ✓ The platform must be rigid and square to the cylinder. ✓ Objects to be pressed must be placed in suitable jigs. ✓ Ensure that the direction of pressure is always at 90° to the object. ✓ Only prescribed equipment must be used. ✓ (Any 2 x 1) 	(2)
2.4	 Reasons for wearing surgical gloves: To prevent HIV/Aids or any blood related infections. ✓ To prevent contamination of the open wounds. ✓ 	(2)
2.5	 Gas cylinder safety precautions: Always store and use gas cylinders in an upright position. ✓ Never stack cylinders on top of one another. ✓ Do not bang or work on the cylinders. ✓ Never allow cylinders to fall. ✓ No oil and grease should come into contact with gas cylinders or fittings. ✓ Keep the caps on the cylinders for protection. ✓ (Any 2 x 1) 	(2)
2.6	 Responsibility of employer: Provide and maintain working systems, work area, equipment and tools in a safe condition. ✓ Eliminate or reduce any hazard or potential hazard. ✓ Produce, handle, store and transport goods safely. ✓ Ensure that every person employed complies with the requirements of this Act. ✓ Enforce measures if necessary in the interest of health and safety. ✓ Appoint a person who is trained and who have the authority to ensure that employee take precautionary measures. ✓ (Any 1 x 1) 	(1)
2.7	 Responsibility of employee: Pay attention to your own and other people's health and safety. ✓ Co-operate with the employer regarding the Act. ✓ Carry out a lawful order given to them. ✓ Report any situation that is unsafe or unhealthy. ✓ Report all incidents and accidents. ✓ Do not interfere with any safety equipment or misuse such equipment. ✓ 	
	• Obey all safety rules. ✓ (Any 1 x 1)	(1)

[10]

QUESTION 3: MATERIALS (GENERIC)

3.1 Metal tests:

3.3

3.1.1 Filing test:

Filing should be done on the tip or near the edge \checkmark of the material to establish the relative hardness. \checkmark (2)

3.1.2 Machining test:

This test is used on two unknown samples, identical in appearance and size, which is cut with a machine tool at the same speed and feed. \checkmark The ease of cutting should be compared and the chips observed for heating colour and curl. \checkmark (2)

3.2 **Sound test on the steel:**

3.2.1	High carbon steel (Hard): Loud and clear ✓ ✓	(2)		
3.2.2	Low carbon steel (Soft): Dull sound ✓✓	(2)		
Heat treatment processes on steel:				
3.3.2	Case hardening: To produce a hard case ✓ over a tough core. ✓	(2)		

	•	0	()
3.3.3	Hardening: To enable the steel to resist wear ✓	and indentation \checkmark	(2)

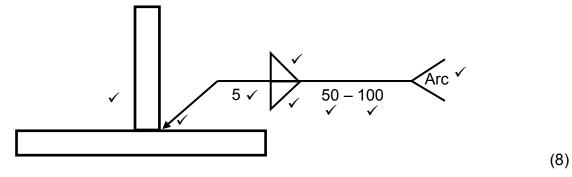
3.3.5 Normalising:

To relieve \checkmark the internal stress \checkmark produced by machining. (2) [14]

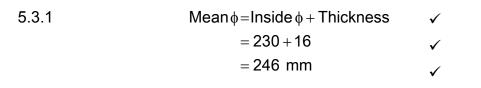
QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	C✓	(1)
4.2	B✓	(1)
4.3	A✓	(1)
4.4	C✓	(1)
4.5	A✓	(1)
4.6	C✓	(1)
4.7	B✓	(1)
4.8	D✓	(1)
4.9	A✓	(1)
4.10	D✓	(1)
4.11	B✓	(1)
4.12	D✓	(1)
4.13	A✓	(1)
4.14	C✓	(1)

[14]

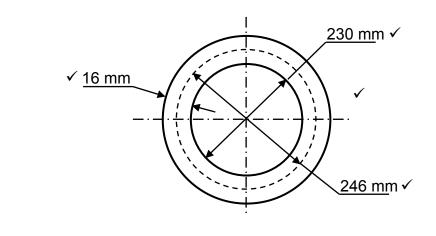

(5)

QUESTION 5: TERMINOLOGY (TEMPLATES) (SPECIFIC)


5.1 **Roof truss:**

- A Principal rafter ✓
- B Cleat ✓
- C Purlin ✓
- D Internal bracing members \checkmark
- E Gusset plate 🗸

5.2 Fillet weld on T-joint:



5.3 **Dimensions of the material:**

Mean circumferance =
$$\vDash$$
 Mean ϕ
= \rightleftharpoons 246
= 772,83 mm

(4) [**23**]

5.3.2

QUESTION 6: TOOLS AND EQUIPMENT (SPECIFIC)

6.1 **Working principle of the following machines:**

6.1.1 **Punch and cropping machine:**

Cropping machines are electrically driven \checkmark and use a heavy fly wheel and clutches \checkmark to engage various shearing blades/punches \checkmark to shear/punch the various profiles. \checkmark (4)

6.1.2 **Spot welding equipment:**

This method uses the heating effect, \checkmark which occurs when a current flows \checkmark through a resistance, \checkmark to fuse two plates together. \checkmark

6.1.3 **Power-driven guillotine:**

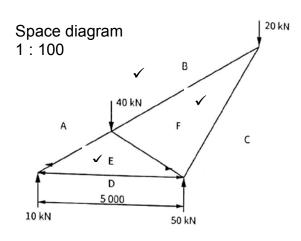
An electric motor \checkmark drives a fly wheel in a gearbox \checkmark that is activated through the electric pedal and clutch \checkmark to turn an axle that lowers the blade by eccentric motion/action. \checkmark (4)

6.2 Uses of the bench grinder:

- To sharpen cutting tools and drill bits. ✓
- To remove rough edges. ✓
- To remove excess material. ✓

6.3 **Types of rolling machines:**

- Horizontal pyramid rolls ✓
- Off-set pinch rolls ✓
- Vertical rolls ✓


(3) **[18]**

(3)

(4)

QUESTION 7: FORCES (SPECIFIC)

Vector diagram 2 mm = 1 kN

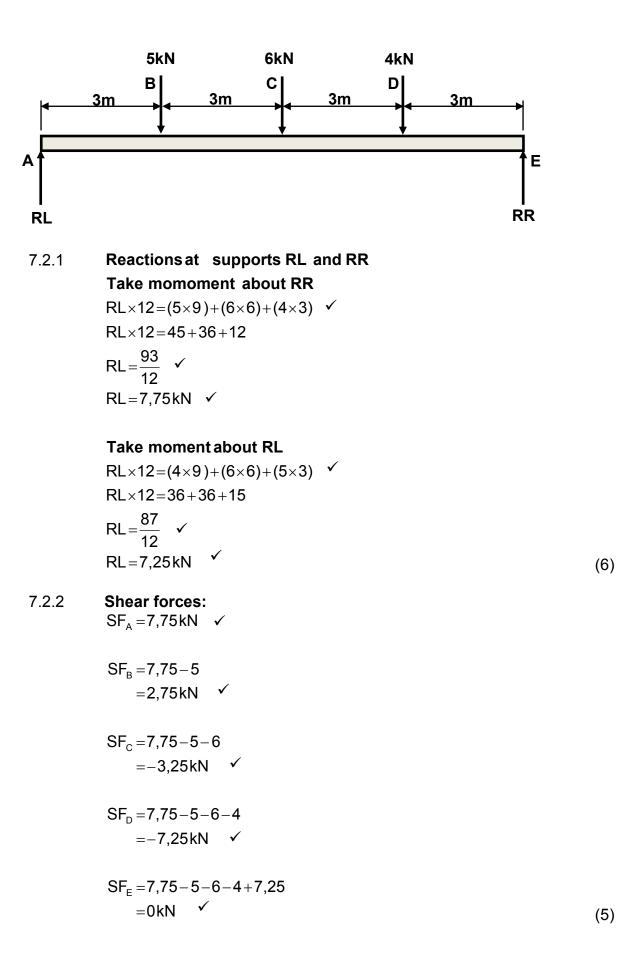
Member	Force	Nature
AE	20 kN ✓	Strut ✓
EF	40 kN ✓	Strut ✓
FC	34 kN √	Strut ✓
BF	20 kN ✓	Tie √
DE	17 kN ✓	Tie √

√

√

 \checkmark

b

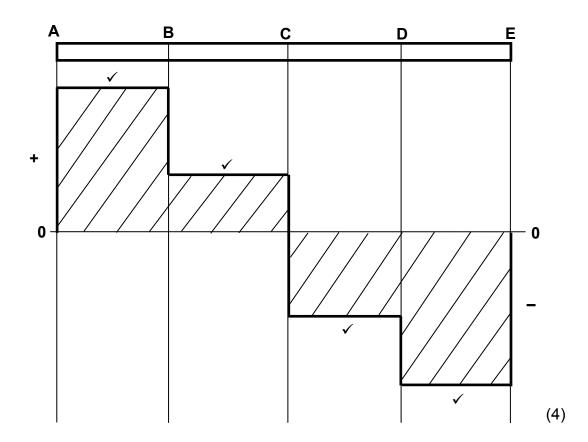

С

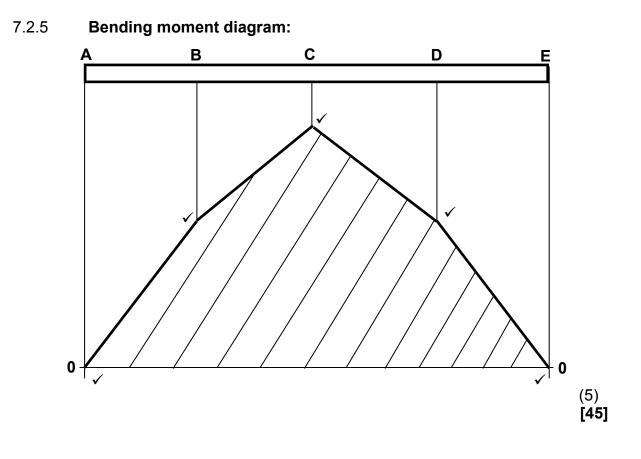
v

d

e

7.2




Please turn over

7.2.3	Bending moments: BM _A =0 kN.m ✓
	BM _B =(7,75×3) =23,25 kN.m ✓
	BM _c = (7,75×6)-(5×3) =46,5-15 =31,5 kN.m ✓
	$BM_{D} = (7,75 \times 9) - (5 \times 6) - (6 \times 3)$ = 69,75 - 30 - 18 = 21,75 kN.m \checkmark
	$BM_{E} = (7,75 \times 12) - (5 \times 9) - (6 \times 6) - (4 \times 3)$

$$3M_{E} = (7,75 \times 12) - (5 \times 9) - (6 \times 6) - (4 \times 3)$$

= 93 - 45 - 36 - 12
= 0 kN.m \checkmark (5)

7.2.4 Shear force diagram:

QUESTION 8: JOINING METHODS (INSPECTION OF WELD) (SPECIFIC)

8.1 **Inspection during arc welding:**

- Amount of penetration and fusion ✓
- Rate of electrode burning and progress of the weld ✓
- The way the weld metal is flowing (no slag inclusion) ✓
- The sound of the arc, indicating correct current and voltage for the particular weld \checkmark (Any 3 x 1) (3)

8.2 **Causes of weld defects:**

•			
	8.2.1	 Welding spatter: Too high current ✓ Too long arc ✓ Not applying anti-spatter spray ✓ Electrode angle too small ✓ Welding speed too fast ✓ (Any 2 x 1) 	(2)
	8.2.2	Incomplete penetration: • Too low current ✓ • Too slow welding speed ✓ • Electrode angle too small ✓ • Poor joint preparation ✓ • Insufficient root gap ✓	(2)
8.3	Prevent	tion of weld defects:	
	8.3.1	 Porosity: Ensure that the surface is clean. ✓ Prevent atmospheric contamination. ✓ Use dry electrodes. ✓ (Any 1 x 1) 	(1)
	8.3.2	 Slag inclusion: Remove slag from previous run before doing the next run. ✓ Ensure that the surface is clean. ✓ Use the correct current. ✓ 	(1)
8.4		eak test: rmine the internal ✓ quality/defects ✓ of the weld metal.	(1)
8.5	 Guided bend test: Lack of fusion of the base metal and weld metal. ✓ Incomplete penetration of the weld metal. ✓ 		(2)
8.6	Free-be Ductility	end test: √	(1)

8.7 Visual inspection process:

- Shape of profile ✓
- Uniformity of the surface \checkmark
- Overlap ✓
- Undercutting ✓
- Penetration bead ✓
- Root groove ✓

8.8 Liquid dye penetration test:

- Clean the surface tested. ✓
- Spray the liquid dye penetrant onto the surface. ✓
- Allow liquid dye to penetrate. ✓
- Remove excess dye with cleaner. ✓
- Spray a developer onto the surface to bring out the colour. ✓
- Areas where the dye has penetrated (defects) will show up clearly. ✓

Copyright reserved

(Any 3 x 1) (3)

(2)

QUESTION 9: JOINING METHODS (STRESSES AND DISTORTION) (SPECIFIC)

9.1 **Distortion:**

Weld distortion is the warping of the base metal \checkmark caused by heat from the welding arc/flame. \checkmark

9.2 **Residual stress:**

As the weld proceeds, \checkmark the surrounding areas expand and contract \checkmark at varied rates, which set up stresses \checkmark in the welded joint. These stresses remain when the weld has cooled \checkmark and are known as residual stresses. (4)

9.3 **Distortion and residual stress:**

- If expansion, which occurs when a metal is heated, is resisted then deformation occurs. ✓
- When contraction, which occurs on cooling, is resisted then a stress will be applied. ✓
- If the applied stress causes movement, then distortion occurs. \checkmark
- If the applied stress does not cause movement, then there will be residual stress in the welded joint. ✓ (Any 3 x 1) (3)

9.4 **Methods to reduce distortion:**

- Do not overweld. ✓
- Apply intermittent welding. ✓
- Place welds near the neutral axis. ✓
- Use as few passes as possible. ✓
- Use back-step welding. ✓
- Anticipate the shrinkage forces. ✓
- Plan the welding sequence. ✓
- Use strongbacks. ✓
- Use clamps, jigs and fixtures. ✓

9.5 **Difference between cold working and hot working of steel:**

Cold working is when deformation of steel takes place below \checkmark the recrystallisation temperature \checkmark of the steel. Hot working is when deformation of steel takes place above \checkmark the

recrystallisation temperature \checkmark of the steel. (4)

9.6 **Factors that affect the grain size of steel:**

- The prior amount of cold work. \checkmark
- The temperature and time of the annealing process. \checkmark
- The composition. ✓
- The melting point. \checkmark (Any 2 x 1) (2)

(Any 3 x 1)

(3)

[18]

(1)

(2)

QUESTION 10: MAINTENANCE (SPECIFIC)

10.1 **Locking out of large machines before maintenance:**

- Due to the danger associated with large machines ✓
- To ensure that isolation switches are switched off \checkmark
- To ensure that switches are locked out and tagged to inform others that maintenance work is being done ✓
- To ensure that nobody can turn on the machine while maintenance is being done ✓ (Any 2 x 1) (2)

10.2 **Tagging plates:**

It has multiple holes so that more than one technician can lock out the machine simultaneously. \checkmark

10.3 **Major and minor services for power-driven guillotine:**

Major service allows for on-going service procedures that are designed to maintain the guillotines in premium working conditions. \checkmark **Minor** service is designed to minimise major mechanical and electrical failures, by employing the principle of preventative maintenance. \checkmark

10.4 **Maintenance guidelines for a pedestal drilling machine:**

- Visual checks of electrical wiring, switches, etc. ✓
- Verify that all guards are secure and function correctly. ✓
- Ensure workspace is clear. ✓
- Confirm availability and conditions of PPE. ✓
- Lubricate moving parts. ✓
- Use moisture-penetrating oil spray to prevent rust. ✓
- Check for availability of specific tools. ✓
- Check the run-out of the spindle. ✓
- Inspect belts for wear. ✓
- Ensure the drive belt is correctly tensioned. ✓
- Check the condition of the rack and pinion mechanisms and lubricate. \checkmark
- Ensure cuttings are removed. ✓
- Inspect the Morse taper sleeves for burrs/scratches. ✓
- Check the security of machine mountings. \checkmark (Any 2 x 1) (2)

10.5 **Overloading a punch and shearing machine:**

- Dulling or breaking blades/punches. ✓
- Putting strain on the motor and drive mechanism. \checkmark (Any 1 x 1) (1)
 - [8]

(2)

(2)

QUESTION 11: TERMINOLOGY (DEVELOPMENT) (SPECIFIC)

11.1 **Conical hopper:**

11.1.1 Vertical height (DE):

$$tan\theta = \frac{opposite}{adjacent}$$

DE=tan70°×EC

= 2,75×1

= 2,75 m ✓

11.1.2 Main radius (AC):

$$\cos\theta = \frac{\text{adjacent}}{\text{hypotanuse}} \qquad \checkmark$$
$$AC = \frac{BC}{\cos 70^{\circ}}$$
$$= \frac{2}{0,34}$$
$$= 5,88 \text{ m} \qquad \checkmark$$

11.1.3 Small radius (AD):

$$\cos\theta = \frac{\text{adjacent}}{\text{hypotanuse}} \qquad \checkmark$$
$$DC = \frac{EC}{\cos 70^{\circ}}$$
$$= \frac{1}{0,34}$$
$$= 2,94 \text{ m} \qquad \checkmark$$

Now AD can be calculated

$$AD = AC - DC = 5,88 - 2,94 = 2,94 m (3)$$

11.1.4 **Circumference:**

Circumference=
$$\pi \times MD$$
 \checkmark
= $\pi \times 4$
=12.57 m \checkmark (2)

 \checkmark

11.2 Square-to-round transition piece:

11.2.1 The true length FG is firstly needed to draw the pattern:

IK = 300 (2 units) IH=150 (1 unit) HK = $1\sqrt{3}$ (1 unit $\times \sqrt{3}$)

The true length FG: Plan length FG = FG-GK = 400 - 300= 100 mm

The true FG is equal to H'F		
$H'F^2 = H'G^2 + GF^2$	\checkmark	
$= 800^2 + 100^2$	\checkmark	
$H'F = \sqrt{650000}$,	
True length FG= 806 mm	\checkmark	(5)

11.2.2 To determine the plan length CI, the sides CE and EI of triangle CEI must be calculated.

$$CE = CF - EF$$

= 400 - 150
= 250 mm ✓
But EI = FH
FH = FK - HK
= 400 - 259,8
= 140,2 mm ✓
True length (CI) = FH² + El² ✓
= 250² + 140,2²
= √82156,04
= 286,63 mm ✓

(4)

11.2.3 JI is one-twelfth of the circumference

Circumference =
$$\pi \times MD$$

= $\pi \times 600$
= 1884,9 mm

 \checkmark

$$\frac{1}{12}$$
Circumference = $\frac{1884,9}{12}$

(3) **[21]**

TOTAL: 200