FORMULA SHEET FOR MECHANICAL TECHNOLOGY (FITTING AND MACHINING)

1. **BELT DRIVES**

Belt speed =
$$\frac{\pi D N}{60}$$

or
$$v = \frac{\pi D N}{60}$$

Speed ratio =
$$\frac{\text{Diameter of driven pulley}}{\text{Diameter of driver pulley}}$$

$$N_1D_1 = N_2D_2$$

Power (P) =
$$\frac{2 \pi N T}{60}$$

Ratio of tight side to slack side =
$$\frac{T_1}{T_2}$$

Power =
$$\frac{(T_1 - T_2) \pi D N}{60}$$
 where T_1 = force in the tight side

 T_2 = force in slack side

$$T_1 - T_2 = effective force(T_e)$$

2. STRESS AND STRAIN

Stress =
$$\frac{\text{Force}}{\text{Area}}$$
 or $(\sigma = \frac{F}{A})$

Strain (
$$\epsilon$$
) = $\frac{\text{change in length }(\Delta L)}{\text{original length }(L)}$

Young's modulus (E) =
$$\frac{\text{stress}}{\text{strain}}$$
 or $(\frac{\sigma}{\epsilon})$

$$A_{shaft} = \frac{\pi d^2}{4}$$

$$A_{pipe} = \frac{\pi(D^2 - d^2)}{4}$$

Safety factor =
$$\frac{\text{Break stress}}{\text{Safe working stress}}$$

3. HYDRAULICS

Pressure
$$(P) = \frac{Force(F)}{Area(A)}$$

Volume = Cross-sectional area \times stroke length

4. KEYS AND KEYWAYS

Width of key =
$$\frac{\text{Diameter of shaft}}{4}$$

Thickness of key =
$$\frac{\text{Diameter of shaft}}{6}$$

Length of key = $1.5 \times \text{Diameter of shaft}$

Standard taper for taper key: 1 in 100 or 1:100

5. GEAR DRIVES

Power (P) =
$$\frac{2\pi NT}{60}$$

$$N_1T_1 = N_2T_2$$

 $Gear ratio = \frac{Product of the number of teeth on driven gears}{Product of the number of teeth on driving gears}$

$$\frac{N_{input}}{N_{output}} = \frac{Product of the number of teeth on driven gears}{Product of the number of teeth on driving gears}$$

Torque = $force \times radius$

Torque $transmitted = gear ratio \times input torque$

Module (m) =
$$\frac{\text{Pitch-circle diameter (PCD)}}{\text{Number of teeth (T)}}$$

Copyright reserved Please turn over

Pitch-circle diameter (PCD) = module (m) x number of teeth (T)

Outside diameter (OD) = $PCD + (2 \times module)$

Addendum (a) = module(m)

Dedendum (b) = 1,157 m

or Dedendum (b) = 1,25 m

Cutting depth (h) = 2,157 m

or Cutting depth (h) = 2,25 m

Clearance (c) = 0.157 m

or Clearance (c) = 0.25 m

Circular pitch (CP) = $m \times \pi$

$$Add_{c} = m + \frac{Tm}{2} \left(1 - \cos \frac{90^{\circ}}{T} \right)$$

$$t_c = Tmsin \frac{90^{\circ}}{T}$$
 or $t_c = PCDsin \frac{90^{\circ}}{T}$

Copyright reserved Please turn over

6. SCREW THREADS

Pitch diameter = Outside diameter $-\frac{1}{2}$ pitch

Pitch circumference = $\pi \times \text{pitch diameter}$

Lead = pitch \times number of starts

Height of screw thread = $0.866 \times p$ where p = pitch of the screw thread

Depth of screw thread = $0.613 \times p$ where p = pitch of the screw thread

Number of turns = $\frac{\text{length}}{\text{lead}}$

Helix angle: $\tan \theta = \frac{\text{lead}}{\text{pitch diameter}}$

Leading tool angle = 90° – (helix + clearance angle)

Following tool angle = 90° + (helix – clearance angle)

7. CINCINNATI DIVIDING HEAD TABLE FOR THE MILLING MACHINE

Hole Circles											
Side 1	24	25	28	30	34	37	38	39	41	42	43
Side 2	46	47	49	51	53	54	57	58	59	62	66

Change Gears												
24 x 2	28	32	40	44	48	56	64	72	86	100		

Simple indexing = $\frac{40}{n}$ (where n = number of divisions)

Angular Indexing = $\frac{n}{9^{\circ}}$

Change gears:
$$\frac{Dr}{Dn} = (A - n) \times \frac{40}{A}$$
 or $\frac{Dr}{Dn} = \frac{(A - n)}{A} \times \frac{40}{1}$ (where A = chosen divisions) (where n = given divisions)