

REMOTE LEARNING ACTIVITY BOOK (RELAB) SUBJECT: AUTOMOTIVE GRADE: 11

> **TEACHER GUIDE** (Expected answers)

INTRODUCTION AND PURPOSE OF THE RELAB

The Covid 19 pandemic has caused serious impact to schooling resulting in major learning loss and instructional time. This scenario has resulted in school implementing rotational timetables-where learners attend school on alternate days or weeks. The Remote Learning Activity Book was conceptualized to engage learners in constructive learning on days they are at home. Hence the RELAB was developed as a strategy to enhance remote learning.

The RELAB is underpinned by the following Legislative demands:

- a) Responding to GDE Strategic goal 2 promoting quality education across all classrooms and schools
- b) **DBE Circular S13 of 2020** the requires the GDE to support the implementation of the Recovery Annual Teaching Plan (RATP)
- c) **GDE Circular 11 of 2020** requiring districts to issue Learning Activity Packs to support schools for lockdown learning. Understanding learning constraints at home as majority of learners do not have access to devices or data to use for online learning. Many households are depending on schools to provide them with learning resources packs

RELAB is designed as workbook with activities based on the Revised Annual Teaching Plan. The exercises are pitched at a standard to expose learners at Grade 10 & 11 to content at different cognitive levels. The NSC diagnostic reports in different subjects have revealed that learners fail to analyse questions and as a result fail to respond accordingly.

The RELAB is intended to ensure that learners work on exercises that consolidate and reinforce topics taught while at school. These exercises are be completed at home and would receive feedback as groups or individually when at school. It is therefore of paramount importance that teachers assess the work with learners in class, as a way of providing constructive feedback. Teacher are also required to diagnose learner responses, remediate where necessary and plan further intervention.

Educators are encouraged to create whatsapp groups to remind learners on what is expected of them in a particular week/ day(s). Effective utilisation of the RELAB activity book would further ensure that all topics in the RATP are covered simultaneously. Feedback from learners at home will confirm usage of the RELAB material and assist to prepare learners for formal assessments.

Topics- Grade 11 Automotive

- 1. Safety Generic
- 2. Tools Generic
- 3. Engines- Generic
- 4. Engines- Specific
- 5. Systems and Control Specific (Mechanical)
 - Drive Systems
 - Brake systems
 - Axles& Steering systems
 - Suspension layouts
- 6. Systems and Control Specific (Electricity)
- 7. Maintenance Generic
- 8. Forces- Generic
- 9. Terminology- workshop layout

Expected Answers

Question 1 and 2 Safety

Below is a rubric to assess the essay question on HIV and Aids.

Level of	General Approach	Comprehension
Achievement		
Exemplary (10 pts)	 Addresses the question. States a relevant, justifiable answer. Presents arguments in a logical order. Uses acceptable style and grammar (no errors). 	 Demonstrates an accurate and complete understanding of the question. Backs conclusions with data and warrants. Uses 2 or more ideas, examples and/or arguments that support the answer.
Adequate (6 pts)	 Does not address the question explicitly, although does so tangentially. States a relevant and justifiable answer. Presents arguments in a logical order. Uses acceptable style and grammar (one error). 	 Demonstrates accurate but only adequate understanding of question because does not back conclusions with warrants and data. Uses only one idea to support the answer. Less thorough than above.
Needs Improvement (3 pts)	 Does not address the question. States no relevant answers. Indicates misconceptions. Is not clearly or logically organized. Fails to use acceptable style and grammar (two or more errors). 	 Does not demonstrate accurate understanding of the question. Does not provide evidence to support their answer to the question.
Not Answered well. Poor attempt (1 pts)		

Question 3

Should there be an emergency, that mean somebody got hurt or seriously hurt, that immediate attention can be given to the wound before professional help can be obtained.

Question 4

- Adhesive Plaster Strips
- Bandage
- Cotton Wool
- CPR Resuscitation Barrier Device
- First Aid Dressing
- Gauze Swabs
- Gloves
- Gloves
- Scissors (General)
- Splints
- Tweezers (Metal)
- Wound Cleaner
- Any other that may not appear in this memorandum

Worksheet lesson 2

First aid multiple choice answers

- 1. A
- 2. A
- 3. C
- 4. D
- _ _
- 5. A
- 6. C
- 7. C
- 8. A
- 9. A
- 10.C
- 11.B
- 12.A
- 13.D
- 14.C
- 15.A

Topic-Grinders

• Any six of the following:

- The safety guard must be in place before you can start the grinding process.
- Protective shields must be placed around the grinding object to protect people passing by.
- Use the right blade for the grinding job.
- Do not force the grinding stone on the object.
- Make certain that there are no cracks in the stone before you start the job.
- Protective clothes and eye protection are essential when working with an angle grinder.
- · Wear ear plugs or muffs.
- Wear safety boots with steel toe caps.
- Wear overalls or other close-fitting clothing.
- · Wear gloves.

2. Any five of the following:

- Use a machine only once the guards have been correctly fitted.

- Wake sure that there is no oil or grease on the floor around the machine which could cause you to slip.
- Check that the tool rest is not more than 3 mm from the surface of the grinding, wheel. Gaps exceeding 3 mm increase the risk of material being drawn in between the tool rest and grinding wheel.
- When starting the machine, don't stand in front of the wheel. Before you start grinding, let the machine idle for a few seconds. The risk of the grinding wheel rupturing is higher at start-up than when it is running at its operating speed.
- If the wheel is running unevenly, dress it with an emery-wheel dresser.
- Grind only on the face of a straight grinding wheel and never on the side of the wheel.
- Use wheels only for their intended purpose. Certain types of grinding wheels should only be used for their corresponding materials. Most grinding wheels are only suitable for grinding ferrous metals. The appropriate degree of coarseness should also be selected for the finish required in the material.
- Approach the wheel carefully and gradually, and don't 'jab' materials onto it. Jabbing puts uneven pressure on the wheel surface causing uneven wear or structural damage to the wheel.
- Never 'force grind' so that you cause the motor to slow or stop.
- Adjust the tool rest only when the wheel is stationary.
- Clamp work pieces and holding devices safely and firmly.
- Never allow the wheel to stand in cutting fluid as this may cause the wheel to run 'off balance' when you switch the machine on again

3. Any five of the following:

The following steps are advised:

- Select the correct type of wheel for the job.
- Inspect the wheel for cracks and tap it to apply the 'ringing test'. Never use a grinding wheel which is damaged or not properly dressed.
- Make sure that the wheel's speed does not exceed the manufacturer's recommendation.
- Never force the wheel onto the spindle.
- Use only one smooth paper spacer on each side of the wheel.
- Use true and correctly recessed flanges of the same size and at least one-third the diameter of the wheel.
- Using a spanner, gently tighten the grinding wheel so that it is held firmly.
- Replace the guards correctly.
- Stand aside and set the machine in motion. Let the machine idle before you dress the wheel, using an emery-wheel dresser.
- Finally, stop the machine and reset the tool rest to within 2 mm of the wheel surface.
- Ensure that the tool rest is parallel to the wheel surface.

4. Any five of the following:

Remember the following safety precautions when using surface grinders:

- The safety precautions applicable to other types of grinders are applicable when using a surface grinder.
- Protective clothes and eye protection are essential when working with a surface grinder.
- Before operating the surface grinder, be sure you have been taught how to control it and are aware of the potential dangers associated with it.
- Do not operate the surface grinder unless all guards and safety devices are in place and working correctly.
- Make sure that you understand the operating instructions applicable to your machine.
- Never clean or adjust the machine while it is in motion.
- Report any dangerous aspect of the machine immediately and stop using it until it has been repaired by a qualified person.
- You may have to stop your machine in an emergency. Learn how to do this quickly and automatically.

Worksheet lesson 5

1. Any six of the following:

Observe the following safety precautions when using a portable drilling machine:

- Wear safety goggles.
- Choose the correct size and type of drill bit. A metal bit is used to drill into iron and a masonry bit to drill into a brick wall.
- The bit must be placed into the chuck of the drill and tightened into place by using the chuck key Make sure that the bit is centred.
- Place the key in the key holder provided at the bottom of the drill's handle.
- If you are drilling into metal, mark the position with a centre punch.
- Stand firmly with your legs slightly apart and one leg more forward than the other.
- Hold the drill firmly and squeeze the trigger.
- If you are drilling through a metal plate, you must decrease your pushing pressure when you come close to drilling through the last piece of the metal plate
- 2. Observe the following safety precautions when using a drill press:
 - Choose a correctly sharpened drill bit for the type of work you need to do and the material of the workpiece.
 - Do not leave the key in the chuck when you are not at the machine.
 - Never leave the machine running if it is unattended.
 - Clamp the workpiece securely to the table and do not hold it by hand.
 - Never try to stop the workpiece by hand if it slips from the clamp.
 - A drill should run at the correct speed for the job.
 - Don't force a drill bit into the workpiece this may cause broken or splintered drill bits and possible injuries.
 - Use a brush or wooden rod to remove chips from the drill. Do not use your fingers, waste or rags.
 - When reaching around a revolving drill, be careful that your clothes do not get caught in the drill or drill chuck.
 - Do not use a drilling machine with a faulty switch.
 - Do not wear loose clothing or jewellery when drilling.
- 1. Any five of the following:

Observe the following precautions when using a power saw:

- See that all guards are in place.
- Make sure that no oil, grease or obstacles are around the machine.
- Select the right blade for the material to be cut.
- When changing blades, ensure that the machine is switched off at the main switch.
- Remove or replace the blade gently Quick movements, such as pulling off the blade, may result in a badly cut hand.
- Do not adjust guides while the machine is running.
- All material must be clamped properly before cutting is started.
- Long pieces of material must be supported at the end.
- Always stop the machine when you leave it unattended.

Worksheet lesson 6

1.

Shears, guillotines, presses.

(1) Where the opening at the point of operation of shears, a guillotine or a press is greater than 10 mm, the user shall cause such machine to be provided with —

- (a) a fixed guard which prevents hands or fingers reaching through, over, under or around the guard into the point of operation; or
- (b) a self-adjusting guard which automatically adjusts itself to the thickness of the material being worked and which prevents hands or fingers reaching through, over, under or around the guard into the point of operation; or
- (c) a manually or automatically operated moving guard which completely encloses the point of operation of such machine and which is so arranged that the working stroke cannot be commenced unless the guard is closed and which cannot be opened unless the ram or blade is stationary; or
- (d) an automatic sweep-away or push-away which pushes any part of the operator's body out of the danger zone when the working stroke commences; or

(e) an electronic presence-sensing device which prevents or arrests a working stroke if it senses that any part of a person's body or any other foreign object is in the danger zone:

Provided that the guarding provided in terms of this subregulation shall not in itself create any threat to the safety of persons.

(2) The user may use or permit the use of shears, a guillotine or a press without the guarding contemplated in subregulation (1) if the operating controls to set it in motion require the simultaneous engagement of both hands of all the operators involved in the operation of the machine, and such operating controls –

- (a) are situated at such distance from the point of operation that none of the operators has enough time to reach the danger zone with any part of his body before the working stroke is completed; or
- (b) are so designed that the working stroke will be arrested if any one of the operators removes one of his hands from the controls:

Provided that the operating controls shall be so arranged that they cannot be bypassed.

(3) The user shall cause any full-revolution clutch shear, guillotine or press which is fed by hand to be provided with an anti-repeat device.

2. Any of the following:

Safe distance safeguarding, Safe holding safeguarding, Safe work procedures, Work-holding equipment (such as back gauges), Properly designed and protected foot pedals, and Hand-feeding tools.

Worksheet – Lesson 7

- 1. Safety rules to observe when working with an arc welding machine
- Make sure the area around which one is going to work is clear of obstruction.
- Use as small a rod as possible when tackling the job. This will give a much better and neater weld on completion of the job.
- Only weld in well-ventilated areas.
- Seek medical attention if one is burnt in any way.
- Do not weld near flammable materials or liquids.
- Do not weld on petrol tanks or any container that has any flammable liquids or gas in it.
- Radiation from the arc is dangerous to the eyes.
- Avoid striking an arc when other people are nearby.
- Take precautions to avoid electric shock.

1.

The following are some safety precautions that should be followed whenusing oxy-acetylene apparatus:

Welding or flame-cutting operations may not be undertaken, unless:

- An operator has been instructed on how to use the oxy-acetylene welding plant safely.
- The workplace is effectively partitioned off.
- An operator uses protective equipment.
- Effective ventilation is provided and maintained.
- Masks or hoods maintaining a supply of safe air for breathing are provided and used by the people performing such operations.
- Additionally, any vessel that contains a substance which, when heated, may ignite or explode (or react to form dangerous or poisonous substances) must not be welded or heated until it has been properly cleaned.
- Where hot work involving welding, cutting, brazing or soldering operations is carried out at places other than workplaces, steps must be taken to ensure proper and adequate fire precautions. When in doubt, the manufacturer's instructions are always the final authority on safety precautions and procedures. African Oxygen (Afrox) freely supplies safety booklets from their outlets and depots on all aspects of welding safety.

- Never use damaged equipment.
- Never use oil or grease on or around oxygen equipment.
- Never use oxygen or fuel gas to blow dirt or dust off clothing or equipment.
- Never light a torch with matches or a lighter.
- Always use a striker.
- Always crack cylinders before assembling the regulators to remove any dust. Always make sure regulators have their adjusting screws released by turning them anticlockwise until free before opening cylinder valves.
- Stand to the side of a regulator and not in front of it when opening cylinder valves.
 - Always wear proper welding goggles, gloves and clothing when operating oxyacetylene equipment.
 - Always have a fire extinguisher handy when operating oxy-acetylene equipment.
- Always use the proper regulator for the gas in the cylinder.
- Always use cylinders in the upright position only.
- Always keep the valve wrench on the acetylene cylinder valve when in use. Open the cylinder valve a maximum half of a turns.
- Do not carry lighters, matches or other flammable objects in your pockets when welding or cutting.

2.

Every gas cylinder should have a plate attached with the following particulars:

- name of the manufacturer
- country of origin
- year of manufacture
- manufacturers serial number
- name, number and date of the standard of design
- design gauge pressure in pascals
- maximum permissible operating pressure in pascals
- operating temperature

The following safety precautions must be observed when handling gas cylinders:

- Store full cylinders separately from empty ones.
- Keep cylinders in a cool place and protect them from sunlight and other sources of heat.
- Always store and use acetylene cylinders in an upright position.
- Store oxygen cylinders apart from acetylene cylinders.
- Never stack cylinders on top of one another.
- Do not bang or work on cylinders.
- Never allow cylinders to fall.
- Do not allow oil or grease to come into contact with oxygen fittings as they form an inflammable mixture.
- Keep the caps on the cylinders for protection.
- The thread on an oxygen cylinder is a right-hand thread.

Worksheet lesson 8

- 1.
- The predetermined pressure must never be exceeded. This operating pressure is always less than the maximum safe pressure and is shown by a pressure gauge on the apparatus.
- Pressure gauges must be tested regularly and adjusted or replaced if any malfunction occurs.
- The platform on which the workpiece rests must be rigid and square with the cylinder of the press.
- The platform must rest on the supports provided and should not be supported by the cable by which it is raised or lowered.
- Objects to be pressed must be placed in suitable jigs. Ensure that the direction of pressure is always at 90° to the platform.
- To prevent damage to soft material, the prescribed equipment must be applied.
- The level of the hydraulic fluid in the reservoir should be checked regularly. If fluid has to be added frequently, it is an indication that there may be an internal leak.
- Regularly inspect the apparatus for rigidity and tighten all nuts and bolts.
- Pins and/or other equipment that keep the platform at a desired height on the frame must be inspected regularly for damage.
- When the apparatus is equipped with cables to alter the working height of the platform, the cable and pulleys must be inspected for damage and lubricated with grease.

Tools – Specific

Worksheet Lesson 5

- 1. Dial indicators are used as precision-measuring tools in the setting up of work on machinery such as centre lathes or milling machines.
- 2. A dial indicator is used to determine:
 - the 'runout' of a flywheel
 - if a crankshaft is bent
 - if a work piece in a lathe is running true
 - if two pieces of equipment are the same size
 - the bearing nip on a bearing shell used on a crankshaft
- Never drop or throw your dial indicators or dial bore gauges onto the bench Return your dial indicators and dial bore gauges to their cases when you are finished with them

Do not lay your dial indicators or dial bore gauges on the bench where they can get damaged

Always use your dial indicators and dial bore gauges at room temperature to avoid distortion from heat or cold

Check the accuracy of your dial indicators and dial bore gauges periodically and recalibrate as needed

Never use your dial bore gauge on moving parts

4.

- A. Lock screw
- B. Short hand
- C. Scale mark plate
- D. Outer frame with limiter
- E. Stem
- F. Spindle / plunger
- G. Long hand

Worksheet Lesson 6

- A telescopic gauge provides a quick and accurate means of checking inside measurements. Small gauges have two plungers which are internally spring- loaded. A telescopic gauge is inserted into the item to be measured, locked and then removed to check the size, using an outside micrometer.
- 2. Care:
 - Do not over-tighten the locking screw.
 - Do not force the telescopic plungers into the bore.
 - Take care when removing the telescopic gauge after measurement was taken.
 - Store gauges safely away after use.

Worksheet Lesson 7

Proper Torque Wrench Use and Maintenance

A torque wrench is a precision instrument designed to apply a specific amount of force to a fastener. Whether tightening head bolts on an automobile engine, lugs for tire and rim installation or inspecting fastener tolerances on high-performance equipment, it is extremely important that proper care is used.

Guidelines are typically provided noting acceptable torque ranges, the order in which specific fasteners are tightened and the number of times a fastener must be tightened and loosened to ensure uniform torque application. Failure to properly torque fasteners can lead to equipment damage, personal injury or worse.

It is important to follow acceptable maintenance and use practices, such as:

1. Safety glasses or goggles should be worn at all times when using any hand tool.

2. Always follow the manufacturer's directions regarding torque direction, proper force, torque pattern/sequence, use or non-use of lubrication on fasteners and torque "tighten/release" cycles.

3. Do not exceed the recommended working range of the torque wrench. Reliable measurements are based on a percentage of the working range. In general, most mechanical wrenches have a useable range from 20% to 100% of full scale. Most electronic wrenches have a useable range from 10% to 100% of full scale.

4. Do not use accessories or handle extensions unless specifically allowed by the torque wrench manufacturer.

5. Take time to inspect the tool and check for worn or cracked sockets. Properly lubricate and replace worn parts.

6. Avoid dropping or sliding a torque wrench. Dropping a torque wrench on a hard surface can cause the instrument to lose reliable calibration. If you suspect that a wrench has been dropped, have the tool inspected by the manufacturer or reputable calibration service.

7. Always store a torque wrench in a protective case and/or location when not in use.

8. Avoid exposure to temperature extremes, high humidity, fluid immersion and corrosive environments.

9. If using a click-type torque wrench, always store it at the lowest level on the scale.

10. Avoid marking, etching or placing labels on torque wrenches.

Use a torque wrench to apply a specific torque value during the final assembly process.
 Do not use a torque wrench as the primary means of tightening or loosening fasteners.
 As most torque wrenches are length specific, always grasp the torque wrench in the centre of the handle. If two hands need to be used, place one hand on top of the other.
 Apply torque in a slow, methodical manner and avoid sudden, "jerking" movements.
 When the wrench signals (by clicking, beeping or lights) that a specific torque has been reached, stop pulling immediately.

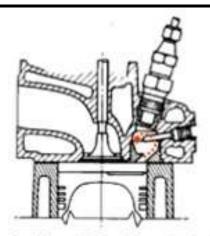
15. After 5000 cycles or up to one year of use, whichever comes first, have your torque wrench inspected and recalibrated by the manufacturer or reputable calibration service.

With proper care, a high-quality torque wrench should provide accurate measurements for many years.

Worksheet Lesson 8

- (1). 8,11mm
- (2). 11,25mm
- (3). 14,19
- (4). 8,91mm

Activity 5								
Instructions	Record of work completed.							
The Teacher will complete the	is Memo based on the measurements of the engine in							
the workshop.								
 Use a dial indicator and do various measurements. Record these measurements in opposite column 	1. Run-out on a shaft/disc: Reading:							
2. Use telescopic gauges and a outside micrometre to measure the bore of and engine. Measure top just below ring groove. Measure bottom and compare	2. Bore measurement: Top Bottom							
two readings	Difference if any							
 Torque a cylinder head in the correct sequence. 	 Specifications of engine head to be torqued: Engine used: 							
	(Example: Ford 1600) Nm							

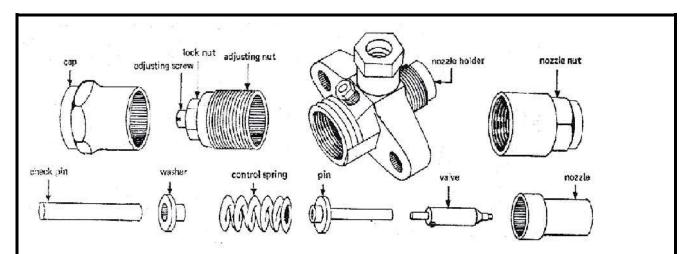

WEEK 4

Draw the sequence you	
would use in opposite column.	10 4 2 6 8 7 5 1 3 9 Cylinder head bolt torque sequence
 Do various measurements with a vernier calliper. 	 Readings: Name each item that was measured (Example Big end journal)
	Name: Measurement:
	Name: Measurement:
	Name: Measurement:

WEEK 5

Grade 11	Term: 1	Week No:	5	Class				
Topic: Tools	Combustion chamber designs							
Instruc	tions		Recor	d of work co	mpleted			
Draw a s following combust chamber 1. Combust piston.		Direct	combustion of	chambers				
2. Pre comb chamber	oustion	2. co	Indirect combustion ch	Top Vie ombustion cha	(Quiescent Chamber)			

 Explain the difference between direct and indirect injection



Indirect injection: turbulent and swirl pre-chamber

3.

- With direct injection the fuel is directly injected into the combustion chamber that is situated in the piston crown. Fuel not heated by a glow plug. Cylinder head is flat.
- With **indirect injection** fuel is injected into a precombustion chamber that is situated in the cylinder head. Combustion chamber connected by passage to cylinder. Fuel can be pre heated by a glow plug.

Grade 11	Term: 1	Week No:	7	Class	
Topic:	Injectors				
Engines					
Instru	ctions	A	nswers/	Record of wor	k completed
 Define the an injecto 		spray. • Spray	fuel into	correct spray p	liquid to a fine atomised pattern. antaneously without
Investigat operation (C) PRES FUE	e a mechanical i e and inspect a . Draw an explo . Draw an exp	II the compone	Ector con	-	understanding of its

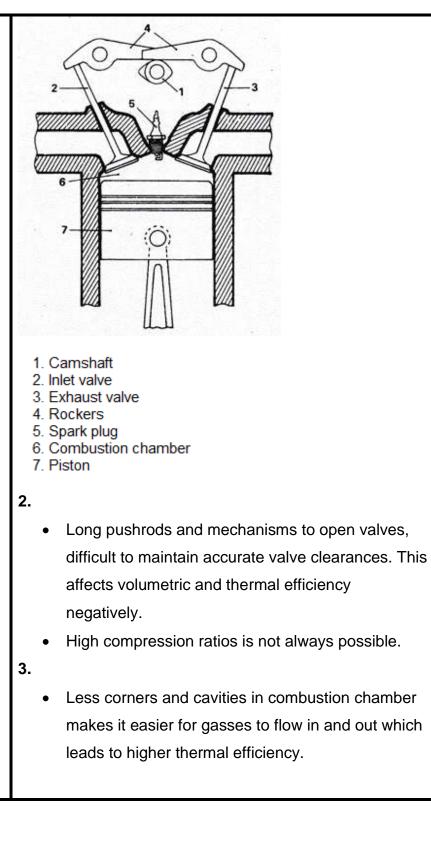
- Which factors in an engine design will determine the type of injector nozzle to be used?
- 4. Why are glow plugs sometimes used with diesel engines?
- Explain how a Piezo injector is activated to inject fuel.

3.

- Combustion chamber design
- Piston design
- Compression ratio used

4.

Mostly used with indirect injection because the engine does not use such a high compression ratio. It can battle to start when air is very cold.


5.

- Piezo injectors use piezoelectric technology to open
- and close fuel injectors at extremely high speeds and precision to inject fuel into an internal combustion engine. These injectors are used in both petrol and diesel engines to improve their performance and efficiency.
- Piezo electricity results from squeezing or applying pressure from certain crystal-like materials or certain ceramics. If this process is reversed and electricity is applied to these same materials, they will expand and return to their original size as soon as the electricity is cut off. The expansion of one crystal is too small to see with the naked eye.

	 How Piezo electricity make Piezo injectors work is by
	using the expansion of the crystals to open the
	injector. The expansion of one crystal is much too
	small to open the injector so there are several
	hundred little Piezo crystals placed one above the
	other covering a length of more than half the injector.
	 When electricity passes through these hundreds of
	crystals their combined expansion is enough to open
	the injector and as stated before they return to their
	original size as the electric charge stops. The crystals
	expand downwards, and an upward movement is
	required to open the injector; so two very small levers
	are used to reverse the process and open the injector
	and a spring closes it as the crystals retract.
	 Higher precision switching on and off.
iI	

Grade 11	Term: 1	Week No:	8	Class	
Topic:	Valve assemb	olies			
Engines					
Instr	uctions		Answer	s/Record of wo	ork completed
the follow arrangem a. I head		f B B B B B B B B B B B B B B B B B B B			6
ovei	ead with head cam embly.	a. 1. Valave 2. Rocker 3. Rocker 4. Spark p 5. Valve lift 6. Pushroo 7. Camsha 8. Combus 9. Piston b.	lug ter/cam fo d aft		

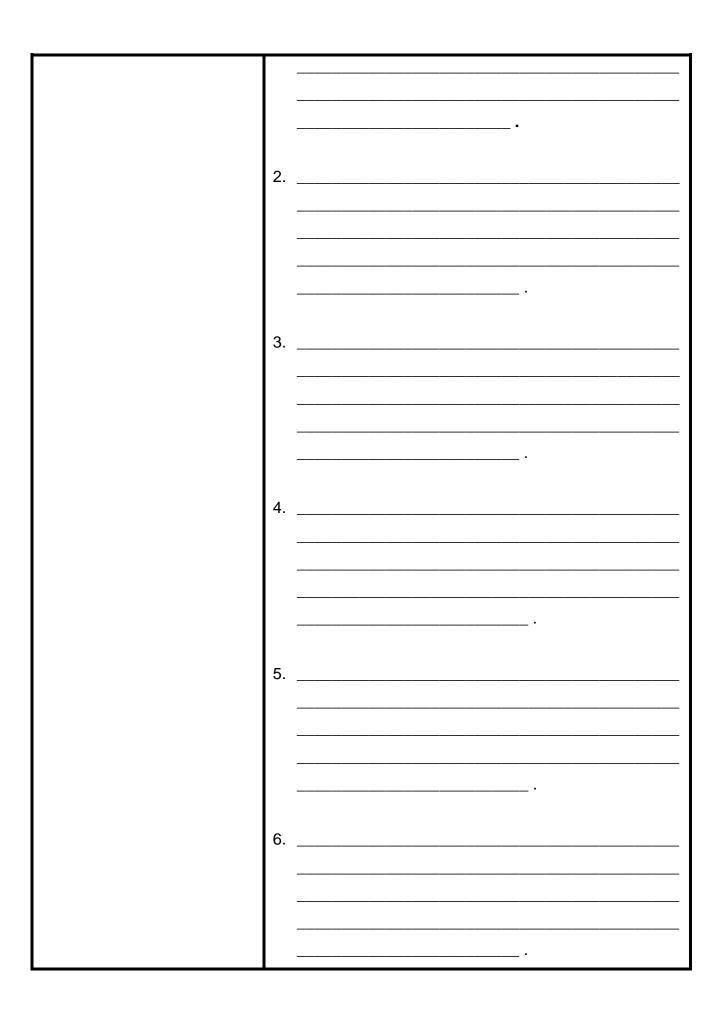
- 2. Why is an I-head valve assembly less efficient than a W-head arrangement?
- Why is the combustion chamber design theoretically ideal on the W-head valve arrangement?

G	arade 11	Term: 1	Week No:	Week No: 8 Class					
То	pic:	Camshaft arra	angements a	gements and followers					
Eng	Engines								
	Instr	uctions		Answers/	Record of wo	ork completed			
1.	-	pes of camshaf	-			O ON WHAT THE			
	-	ents that are				HE AUTOMOTIVE			
	available			RKSHOP					
	automotiv	e workshop.	1.						
			1.1						
						·			
			1.2			•			
			1.3			·			
			1.4			·			
2	Evolainw	hara aach							
2.	Explain w	is mounted in	2.1			_			
	the engine								
	-	.1 and 1.2 must	2.2						
	match)								
			2.3			·			
			2.4			•			
3.		the advantages	3.						
	of a hydra follower/lif			cise timin	n with which it	t opens and closes			
		e and non-		jine valves					
	-	e followers?		ent operatio					
				-					

4. Why does valve timing	
remain more accurate with	4.
the use of a hydraulic	The hydraulic lifter maintains very accurate valve
valve follower? Explain.	clearances, thus maintaining accurate timing of when
5. Explain the function of	valves open and close.
a cam follower.	
	5. Cam followers carry rotary movement from the
	camshaft to reciprocating movement of the engine valves.

Grade 11	Term: 1	Week No:	8	Class	6	
Topic:	Valve timing	diagram				
Engines						
Instr	uctions		Answer	s/Record	of w	ork completed
1. Do resear	ch on one	1. Val	ve timin	g diagrar	n an	d specifications
specific ve	ehicle and draw					
a valve tir	ning diagram fo	r	EXAMPL			IG DIAGRAM
that speci	fic vehicle.		TDC EXHAUST CLOSES			
Vehicle	e make and					
model	must be			30-	5 °	
mentio	ned.	EXHA	UST OPEN 2	31°		INTAKE OPEN 218°
	specifications o	f				
vehicle	•			X		
				35 *	469	EXHAUST
			3			OPENS
					CLOSE	s
		Engine sp	ecificatio	ons:		
		5				

Grade 11	Term: 1	Week No:	9	Class		
Topic:	Variab	ble valve timing				
Engines	Timing	drive gear				
Instr	uctions		Answers/F	Record of wo	ork completed	
 Do resear various m be used to continuou timing. Dis TWO met can be ac 	alve timing. The on the ethods that car b achieve s variable valve scus at least hods on how th hieved. The must be	con Imp Imp 2. REASI Method 1 	nditions. prove fuel c prove emis	consumption. sions level to	ce of vehicle under all less harmful. DONE BY LEARNER	
timing cha belt drive? 4. What are	the ages of timing	 3. Chatha shoudan dan 4. It catha dou Rol 	n a belt dri ort life span nage. an be a co ible overhe	ve. Same be that if it fails mplicated sys ad cam drive and the chain	ve a longer life span It drives have a very can lead to engine stem especially with	


This can affect the cam timing.

TERM 2

Grade 11	Term: 2	Week No:	1	Class			
Topic:	Final drives	3					
Systems and Control							
Instruc	tions		Answers/	Record of wo	ork completed		
		1.					
 Describe the difference between a spiral bevel and a hypoid type final drive. Explain the functions of the differential? Why does a spiral bevel differential have such a quiet operation? 		 Sp gea the gea the Hy pla wh 2. Dis eve the the 3. The 	 Spiral bevel type uses spiral teeth with the pinion gear placed exactly on the horizontal centre line of the crown wheel. Hypoid type also uses spiral teeth, but pinion gear placed below the horizontal line of the crown wheel. Distribute the torque evenly to the drive wheels even when there is a difference in speed between the two drive wheels. There is contact of more than one tooth at a time 				
 Explain the advantage of the limited slip differential if compared to the conventional differential. Witch parts are found in the limited slip differential that is not in the conventional differential. 		4. • A store tore • Wit	 between pinion and crown wheel that ensures a very quiet operation. (large tooth contact area) A standard differential applies the same amount of torque to both wheels, when one start slipping the torque is transferred to the slipping wheel. With the limited slip differential torque will be supplied to the non-slipping wheel. 				

 In limited slip differentials of the clutch type, a set
of multi-plate clutches and spring pack could be
found.

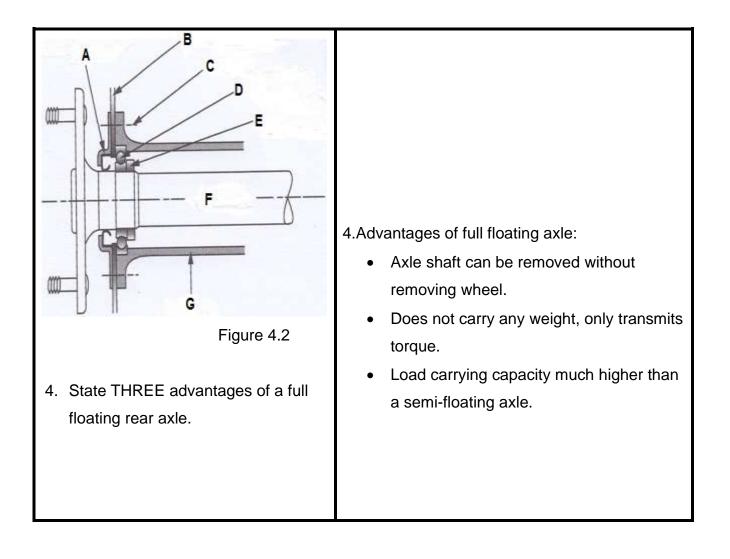
Grade 11	Term: 2	Week No:	2	Class				
Topic: Systems	Drive sys	tems						
and Control								
Instructions			Answers/Record of work completed					
1. Do research on a		LEARNE	LEARNER TO DO RESEARCH AND COMPLETE THIS					
minimum of TEN			SECTION					
vehicles and list:			s of vehic					
1.1 The type of drive		1			·			
system of each.		2						
		3			·			
		4			·			
		5			·			
		6			·			
		7			·			
1.2 TWO A	dvantages	8						
obtaine	ed from the lar drive	9						
system	for each of V vehicles	10			·			
	V VEHICIES	1.2 Advar	ntages of o	each drive sy	vstem (two each):			
		1						

	7
	8
	9
	· 10·

Grade 11	Term: 2	Week No:	3	Class						
Topic:	Hydraulic E	Brakes	kes							
Systems and	Master Cyli	nder	ler							
Control										
Instruc	tions	A	nswers/R	ecord of wo	ork completed					
1. Dismantle a d	lual brake	1. Learner	to do cor	ndition repo	ort below on all					
master cylind	er.	componen	ts:							
Investigate all co	omponents									
and write a cond	lition report o	n								
the master cylind	der and all									
components.										
When task is co	mpleted,									
master cylinder	must be									
assembled.										
2. What is the	purpose of th	е								
check valve	in the master	2. Check v	valve will k	eep a consta	ant pressure on system					
cylinder?		to preve	ent air ente	ering the sys	tem.					
3. Explain the	operation of a	l I								
dual master	cylinder whe	n 3Thei	n pushrod	forces the p	rimary piston towards					
the brakes a	re applied.	the fro	nt.							

	The primary washer on the primary piston shuts off
	the relief port and pressure builds up between
	pistons.
	• The secondary piston moves forward, and the
	primary washer shuts off the relief port in this
	section as well.
	• Further movement of the brake pedal and push rod
	increases the pressure in both sections and this
	pressure is transmitted to the brake fluid in the
	pipes and wheel cylinders.
	 Should the system that is connected to the rear
	pressure chambers fail, the primary piston will
	move up against the secondary piston. The pistons
	then move forward as a unit and pressure builds up
	in the front pressure chamber. In this case,
	excessive movement for the brake pedal will be
	experienced and efficiency will be decreased
	correspondingly.
	 Should the system that is connected to the front
	pressure chambers fail, the primary piston will
	move towards further to build up sufficient pressure
4. If you experience binding	in the rear pressure chamber. Again, efficiency will
brakes, what could be the	be decreased, and excessive movement of the
possible reason/s?	brake pedal will be experienced.
	4.
	• To little free play between pushrod and piston.
	If vehicle uses rear drum brake system, incorrect
	adjustment between shoes and drum.

Grade 11	Term: 2	Week No:	4	Class			
Topic:	Hydraulic Brakes						
Systems	Brake Booste	ers					
and Control							
	Instructions		Ansv	wers/Record	of work completed		
1. Below is a	a sketch of the	orake	1.				
servo/boo	ster.		A. Push	rod			
Label a	all the compone	nts.	B. Air filt	er			
D D	F G	H	C. Contr	ol valve asser	nbly		
BC		4	D. Vacu	um passage			
	0	-01		er diaphragm			
	100000 1	1	F. Vacuum chamber				
L J			G. Vacuum pipe to intake manifold				
K				er cylinder			
				outlets			
			J. Pushrod				
			K. Diaphragm support/valve body				
2. Explain th	e operation wh	en in	L. Reaction disc				
·	sed position. D		2.				
point form	•			ike pedal at re			
			Control valve in rest position.				
			 Control valve pushed by spring keeping atmospheric port open. 				
					spheric pressure to be the diaphragm		
				sembly.	ano alapinagin		
3. How woul	d you test if the	e brake		phragm in res	st position.		
servo is w	vorking?			Princigini in 100			
			3.				


Before engine of vehicle is started, press
the brake pedal hard.
 Start the vehicle engine and brake pedal
becomes softer moving downwards to a
certain distance.
 If pedal does not move down, brake
servo could be faulty.

Grade 11	Term: 2	Week	K No:	4	Class	
Topic:	Hydraulic Bra	akes				
Systems	ABS brakes					
and Control						
Ins	structions			Answers	Record of	work completed
1. Explain w systems (for motor 2. Vehicle system warning system switche no prob once th started	hy antilock brak ABS) was deve	ABS S ng and re is vstem veen a need	1. • • 2. •	When one during brai consequer control of a Stooping d traction is f surface. Vehicle mu braking. ABS was problems occur. If the ABS must be in their driving distances i	or more of a king, it can h nees so that a vehicle. listance is al lost between ust be contro developed t that occur system bec formed so th g style to all in an emerge	a vehicle's wheels lock have serious a driver may lose lso increased when in the tyre and the road ollable even when to overcome the when wheel lock
3. Althoug system compo THREE	s? Explain. gh ABS braking s consist of ma nents, there are that all system s listed below.	ny 9	3. Fu	test is performating.		etermine if the system is

Explain the function of each	
of these components.	
3.1 Wheel speed sensors	
3.2 Electronic control unit	 3.1 Produce a signal that correspond to wheel and tyre speed. Rapid decrease in the sensors signal frequency indicate that a tyre is starting to lose traction. An electric signal is sent to the hydraulic modulator to pulsate hydraulic pressure to that wheel to prevent lock up.
3.3 Hydraulic modulator	3.2
 4. ABS operates mostly in THREE modes. Explain what happens during each of the operating modes below 4.1 Isolation mode 4.2 Dump mode 	 Information received from the wheel speed sensors by the ECU will calculate the best course of action for the hydraulic modulator. An ABS ECU normally uses two microprocessors that run independently from each other. 3.3 The hydraulic modulator will regulate the fluid pressure to each wheel during ABS operation. 4.
	 Tyre slip is detected by the control module.

	 The control module energises a modulator
4.3 Reapply mode	solenoid to isolate the hydraulic circuit from
	the other brake lines.
	 Fluid is trapped in the wheel brake at the
	currently applied pressure.
	4.2
	 The control module senses that a tyre is still
	slowing down.
	 The module energizes a solenoid to release
	fluid pressure to the wheel that continues to
	slip.
	 Tyre speed will increase.
	• Tyte speed will increase.
	4.3
	 The control module detects that the tyre speed
	has increased, and more braking is needed.
	The control module de-energizes the dump
	and isolation solenoid to allow fluid pressure to
	build up in circuit again, restoring braking
	effort.
	 Remember this control happens at a fraction
	of a second much faster than a human can
	react.

Grade 11	Term: 2	Week No:	5		Class	
Торіс:	Front and rea	r axles	-			
Systems						
and Control						
	Instructions		A	nsw	ers/Record	of work completed
1. Identify th	e type of axle b	elow.				
1986 B200			1.		e of axle:	
				Soli	d beam front	axle / I beam axle
2. State one	disadvantage o	of the type	2. Disa	adva	ntage:	
of front ax	de in point no 1		 Not strong to resist torque reactions 			
			•	Whe	eel cannot mo	ove independently from
3.			each other			
3.1 Identi Figure 3.2.	fy the type of re	ar axle in	3.1 Se	emi fl	oating rear a	xle
	the components	s of the				
rear axle in fig	jure 4.2.					
			3.2			
			A. (Dil se	eal	
		B. Backing plate for brakes				
		C. Bolts				
			D. E	Ball b	earing	
			E. Retaining collar for bearing			
			F. Half shaft or drive shaft			
			G. /	Axle I	housing	

Grade 11	Term: 2	Week No:	6-7	Class			
Topic:	Steering syst	ems					
Systems	Manual steer	ing boxes					
and Control							
	Instructions		Ans	wers/Record	of work completed		
1. Identify th	e type of steerin	ng box	1. Type	of steering box	x:		
below.			Ra	ack and Pinion	steering		
2. State ON	E advantage an	d One	2.				
	age of this type		Advantag	ge:			
box.	age of the type	er eteening	Compact steering system				
			• Fe	wer componer	nts than conventional		
			steering box				
			More direct steering feel				
			Short turning circle				
			Disadvantage:				
3. Explain th	e function of the	e steering	Because of direct feel it can transfer				
box.			m	ore vibrations o	of road surface to driver		
			3. Functi	on of steering b	box. (gearbox):		
			• Pr	ovide precise o	control of vehicle.		
				•	motion of the steering		
				neel into recipro neels.	ocating (to and from) of		
					ble gear ratio for easier		
4 Evolain w	hat a reduction	ratio is		eering. ovide road feel	to drivor		
. ∟лріані w	what a reduction ratio is.						
			• Ar	osorb road sho	UND.		
			4.				

5. Name THREE types of steering	Reduction ratio is using a small input
boxes besides the rack and pinion	gear on a bigger gear to give advantage.
type.	5.
	Worm and gear.
	 Hourglass worm and sector.
6. What is the function of the pitman	Cam and roller.
arm?	• Worm and nut with recirculating balls.
	6.
	• Transfer the movement from the steering
	box to the draglink or steering linkages.

Grade 11	Term: 2	Week No:	6-7	Class		
Topic:	Steering systems					
Systems	Hydraulic and	d electric pov	wer steering			
and Control						
	Instructions		Answe	rs/Record o	of work completed	
1. Name the	TWO types of	power	Type of stee	ring system	S:	
steering s	ystems genera	ly in use.	 Integr 	al type – no	ormally using worm type	
(Hydraulic	:)		boxes	6.		
			 Semi- 	external sys	stem using external ram.	
			 Rack 	and pinion s	system.	
power ste 3. Describe f	main compone ering? the operation of /hen the wheels	the power	pinior • Fluid • Hydra • High p • Spool 3.	n type. reservoir. aulic pump. pressure hy valve or co	teering box or rack and draulic pipes. ontrol valve.	
	ch on electric p nd explain why		 Spool activa Press side c 	ited. ure will be c	tary valve will be directed to the correct thus assisting driver to eel.	
manufacti	urers are taking		Learner con below:	npletes his	/her own research	

above the conventional hydraulic	4.
power steering.	
5. Why must "steering characteristics"	
remain under all speeds? Explain.	
	 5.
	 During slow speeds, there should be
	more assistance to the driver.
6. Name THREE advantages of	 During high speeds, this assistance must
electric power steering to the	be much less so that the driver can have
conventional hydraulic power	the normal road feel through the steering.
steering under the following	6.
headings:	
6.3 Safety	
	6.1 Safety: A fully electric power steering can
	have the following safety features built in:
6.4 Comfort	Stabilisation functions.
	 Lane departure warning e.g., new
6 E Stearing	Passat.
6.5 Steering	Obstacle avoidance assistance.
	6.2 Comfort:
	Straight line running correction.
	Lane keeping assistant.
	Variable assistance.
7. Explain the function of the torque	6 3 Steering
sensor.	6.3 Steering:
	Steering performance and feel are
	adapted to all road conditions.

8. What does it mean when manufacturers call electric power steering a modular design?

- 9. What is the average gear ratio for a steering gearbox?
- 10. When diagnosing a fault on the EPS there is normally a SIX stage process. Draw a line diagram to show the SIX stages.
- 11. What is the function of the spool control valve on the hydraulic power assisted steering?

- Steering noise is reduced (Hydraulics can be noisy).
- Uses less space due to the modular design.
- All electric power steerings use some sort of torque sensor to measure driver effort on the steering wheel. The torque sensor will relay to the ECU how much assistance is needed by driver to turn the wheels.

8.

7.

This means that all systems/components are packed into one unit.

9.

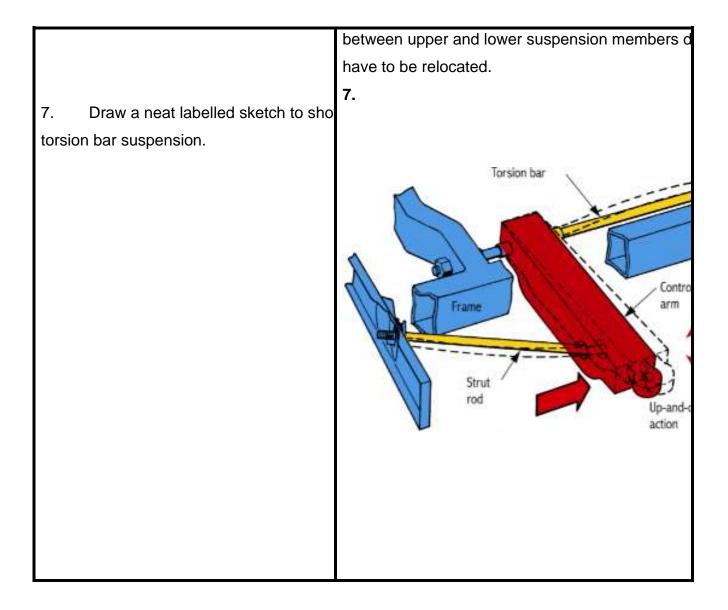
16:1 – 24:1 ratio

11. Six stages of diagnosing faults:

 Six-Step Problem Solving Model
 1. Define the problem
 2. Determine the root cause(s) of the problem

 3. Develop alternative solutions
 4. Select a solution
 5. Implement the solution
 6. Evaluate the outcome

11.


 The spool valve consists of ports of varying sizes. This will allow fluid pressure to the correct fluid line (hydraulic circuit) depending on amount of assistance the driver needs to turn the wheels with the minimum effort. If no torque comes from the steering, then

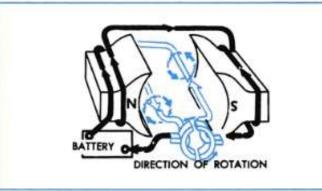
spool valve will be in centre position with
no hydraulic assistance rendered to
driver.

Grade 11	Term: 2	Week No:	7		Class	
Topic:	Steering syst	ems				
Systems	Steering cont	rol compone	ents			
and Control						
	Instructions		Ar	ารพ	ers/Record	of work completed
1. Explain the	e purpose of the	e drag link.	1. Con	nec	ts pitman arn	n and steering arm to
			enable	whe	eels to move	left and right through all
2. Would a ra	ack and pinion f	type	steering	g lin	kages.	
steering m	nake use of a dr	ag link?	2.			
3. Explain th	e function of tie	rod	•	No		
assemblie	S.		3.			
4. Explain th sockets.	 Explain the function of ball joints/ball sockets. 			cent Allo [,]	tre link. ws for toe-in (ng knuckles to the or toe-out adjustment.
replaced o	 When a component has been replaced on the suspension, what 			oart	s in any direc	tion.
6. What is a determine	would need to be checked?What is a quick method todetermine if a ball joint or tie rod end		• \ 6.	Whe	eel alignment	angles.
is worn?			: ; 	a pit and be a	t, one person right the pers	on a four-poster lift/over moving the steering left son underneath should ccessive movement on od ends.

Grade 11	Term: 3	Week No:	1	Class						
Topic: System	Steering syster	ns								
and Control	Steering contro	ol components	components							
Instructions Answers/Record of work completed										
1. Define s	prung mass.	1. The p	earts of a vehic	cle resting on top	of the susper					
		such as bod	y engine etc.	are called the spr	ung mass of a					
2. Define u	nsprung mass.	vehicle.								
		2. The p	arts not restin	ng on the suspens	sion like the					
	ethods to reduce	wheels, axle	s etc. are call	ed the unsprung i	mass of the					
unsprung mass		vehicle.								
		3.								
		• Use o	• Use of an independent suspension.							
		• Susp	Suspension components made from light weight							
		material.	material.							
		• Light	Light weight wheel rims							
		• Inboa	 Inboard brake systems can also reduce the unsp 							
		mass.								

Grade 11	Term: 3	Week:	1	Cla	SS	
Topic: System	Suspension	ay outs				
and Control						
	Instruction	S		Answers/R	eco	ord of work completed
1. State o	ne advantage o	of leaf spring	; 1.			
versus coil sp	ring.		• Ca	an carry hig	h ve	ertical loads.
			• St	urdy conne	ctio	n between body and axle
			2.			
	WO disadvanta	ages of leaf	• Di	fficult to fine	e tu	ne a suspension with leaf
springs.			springs.			
						mfort on most motor vehic
	huna af vahialar			duty vehicle	es fo	or load carrying capacity.
	type of vehicles	s would norn				
make use of le		ro poodod fa	4. To reduce body roll or body sway when the			
	e anti-sway ba	is needed ic				
spring suspen	51011 !		5. The vertical travel of the spring when a ver			
5. What d	oes the term su	isnension tr	hits a full	bump.		
refer to?				oraion hara	orc	lighter then loof enringe
			0. 1	UISIUII Dals	are	e lighter than leaf springs.
6. State F	IVE advantage	s of torsion	^t *They re	quire no lub	rica	tion, provided that their fr
suspension.			ands pas	s through a	ruk	ober bush on the frame.
			*They ar	e quiet in op	bera	ation.
			*The ridi	ng height or	gro	ound clearance can be ea
			adjusted	to compens	sate	e for sagging.
				sion stresse	s a	re transferred to the centr
				sis, allowing	lig	hter body structures at the
			front.			
				· ·	,	can be easily fitted to
			independ	lent front su	ispe	ensions because coiled sp

Grade 11	Term: 3 Week 1 Class								
Topic: Syster Con	trol								
and Control Sho	and Control Shock absorbers								
Instructions	Answers/Record of work completed								
1. Explain the	1. Shock absorbers are used to control spring reactions.								
purpose of the shoo	When the wheel hits a bump, the spring is compressed.								
absorber.	This can lead to the spring oscillating up and down uncontrollable.								
	The telescopic shock absorber will control compression and rebound or								
	spring.								
2. Explain the	2.								
compression stroke	 When the spring is compressed the piston in the inner cylinder n 								
shock absorber.	downward.								
	Because fluid cannot be compressed it is displaced through the								
	ports of the valve to the chamber above the piston of the inner cylinder								
	• Because the volume below the piston becomes smaller some flu								
	displaced through the fluid ports of the valve to the outer cylinder								
	• The upward movement of the wheel is partially dampened by the								
3. Explain the	being forced through the valves and small fluid ports								
rebound stroke of the	3.								
shock absorber.	• During the rebound stroke the spring return with a great force								
	• The piston moves up in the inner cylinder								
	• The pressure on the fluid above the piston opens the lower pisto								
	valve and fluid is transferred back to the inner cylinder below the pistor								
	• At the same time the upper valve at the bottom cylinder opens a								
	fluid is transferred through the fluid ports from the outer cylinder to the i								
	cylinder								
	Because the fluid ports are smaller for the rebound stroke the sp								
	is dampened to prevent it from oscillating.								
	• This will prevent the body of the vehicle to bounce up and down								
	uncontrollably								
	· ·								


4. What is the						
difference between a						
hydraulic and gas fil	4.					
shock absorber?	Gas filled shock absorbers are similar to the twin tube system, but the f					
	placed under pressure by gas to prevent the oil from overheating and					
5. What are the	foaming.					
dangers of worn sho	This will ensure that the shock absorbers perform to its maximum unde					
absorbers?	conditions.					
	5.					
	• Spring will oscillate out of control with body bouncing up and do					
	vehicle will be difficult to control					
	Poor road holding					
	 Because tyre loses contact with road surface more often it will w 					
6. Explain the	more uneven					
difference between a	Poor braking					
anti-sway bar and a	More wear on suspension components					
stabilizer.	• Soft ride over small bumps and firm control over larger bumps					
	6					
	• An anti-sway bar dampens the sway of a vehicle especially whe					
	cornering. Prevents lifting on opposite side when cornering.					
	• The stabiliser bar keeps the wheels stable under the vehicle to					
	prevent it from sliding sideways. especially used on rear suspensions v					
	coil springs					
difference between a anti-sway bar and a	 Poor braking More wear on suspension components Soft ride over small bumps and firm control over larger bumps An anti-sway bar dampens the sway of a vehicle especially wh cornering. Prevents lifting on opposite side when cornering. The stabiliser bar keeps the wheels stable under the vehicle to prevent it from sliding sideways. especially used on rear suspensions 					

Grade 11	Term: 3	۷	Veek	2		Class		
Topic: Syster	Conventional	Ignition system (Contact points system)						
and Control								
Ins	tructions			Answe	ers/Re	ecord of v	work completed	
1. Examir	e the following	1 . Fu	inction o	f compo	nents	5:		
components c	of the conventio							
ignition syster	n and answer tl							
questions that	follow.							
		•	Ignitio	n switc	h			
Ignition	n switch	As so	on as ig	nition is	switc	hed on po	ower is supplied from the	
		batter	у					
• Ignitio	n coil	•	Ignitio	n coil				
		Enabl	les volta	ge to be	step	ped up to	approximately 25000 volt	
• Distrib	utor compone	•	Distrib	outor co	mpor	nents		
• Contac	ct points	0	Conta	ct point	S			
		Break	the circ	uit				
• Conde	nser	• Condenser						
		Store electric current to be released when needed						
o Distrib	uter shaft	 Distributor shaft 						
		Will open contact points at correct time and correct number of						
		for en	igine cyl	inders				
o Distrib	uter cap	0	Distrib	outor ca	р			
		Distrik	oute hig	h voltag	e from	n rotor to I	HT leads	
o Mecha	nical advance	0	Mecha	nical a	lvanc	e		
		Will a	dvance	the spai	k as e	engine sp	eed increases and retard	
		engin	e speed	decrea	ses			
o Vacuu	m advance	0	• Vacuum advance					
		Retard spark as cylinder load or charge increases and advand						
		spark	as load	decreas	ses			
• HT lea	ds	0	HT lea	ds				

		Carry	y the high voltage to the spark plugs
0	Sparkplug	0	Spark plugs
		Supp	bly an air gap where the spark will jump to earth to ignite
2.	The ignition coil is on	e fuel r	mixture
the c	components capable of	2.	
incre	asing the 12 volts input	•	The ignition coil consists of two sets of windings arour
the b	attery to about 25000 v	c Iamir	nated iron core
be d	elivered across the air g	ja •	The one has about 200 windings and the other about
the s	park plug.	wind	ings. Primary and secondary coils
Expl	ain how this increase in	•	When contact points close current flow through both s
voltage is possible.		wind	ing or coils
		•	A magnetic field is formed around both coils
		•	As soon as contact points open primary circuit is swite
		and	magnetic field collapses
3.	Why is a spark plug h	•	Because of the high number of windings in the secon
rang	e important?	coil a	and the magnetic field cutting through it due to the colla
		high	voltage is induced to produce the spark at the spark plu
		3.	
4.	What does ignition tir	n	Heat range is important because it depends on engin
	to in a for stroke petrol	desig	gn and running temperature of the engine
engii	ne?	•	To hot plugs or to cold could lead to engine not burning
		fuel r	mixture correctly
		4.	
		•	The time when the spark ignites the fuel mixture

Grade 11	Tern	n: 3 Week N): 3	Class					
Topic: System	Starting c	ircuit							
and Control									
Instr	ructions		Answer	s/Record of wo	ork completed				
1. Vehicle	e manufactu	1.							
opt more and	more for ke	Some keyle	ss systems a	re passive syst	ems where the driver just				
ignition. Do so	ome researd	to have the	key on him, t	hus no buttons	have to be pressed to unl				
this and expla	in one	the driver's	door. The do	or is for exampl	e automatically unlocked				
disadvantage	of the keyle	the door ha	dle is lifted.	Battery life can	be a problem because th				
system?		transmitting	signal must	pe strong enoug	gh to communicate with th				
2. Discus	s the constr	vehicle. The	key must be	able to identify	whether it is friend or foe				
of the starter r	motor.	approachine	the vehicle.						
		2.							
		The starter	notor consist	s of:					
		• One	armature						
		• Four	copper brusł	nes to carry high	n amperage				
		• Four	heavy duty fi	eld coils					
		• Sole	oid						
		• Hous	ing						
		• Gear							
			ix drive						
	nple sketch	• Dies	el engine stat	or motor will us	e more field coils and hea				
explain the op	eration of the	gauge wire	o supply suf	icient torque to	turn the engine against th				
starter motor.		high compre	ssion.						
		3.							


When a current –carrying conductor is placed in a magnetic field, conductor will tend to move in the direction indicated.

A simple electric motor with one loop of wire for an armature is sh Direction that current is flowing through armature will turn it anti clockwise. The field coils and conductor are connected in series. Current flowing through field coils at same time as it flows through conductor.

The magnetic fields that are created will turn the conductor that w the armature in the starter motor to start the vehicle. The basic principal of operation is like magnetic poles repel one another and unlike poles attract each other this push pull action will turn the armature.

The next drawing show how lines of force react to the distortion of magnetic fields and one conductor has a upward thrust and the of downward thrust.

4. What makes it pos that a started motor can h sufficient torque to turn a car engine?

End view showing push and pull action.

4.
The small gear of the starter to the ring gear on the flywheel gives
gear reduction to with sufficient torque to turn the motor.

Grade 11	Term: 3	Week:	3	Class			
Topic: Syster	Supple	mentary Syst	Systems				
and Control	Traction	n control					
	Instruction	S		Answers/Reco	ord of work completed		
1. Do rese	earch on tractio	n control use	1.				
the modern m	otor vehicle an	d answer the					
questions that	follow.		1.2 "S	teerability" is lo	ost if wheels are losing tra		
1.1 Explain	the function of	traction con	when acc	celerating seven	rely. Traction control has		
			develope	d to prevent wh	heels from		
			spinning.	Traction control	ol has been developed as		
			supplem	ent to ABS. Tra	ction control must not be		
1.2 Various	s methods can	be used to co	confused	with an Electro	onic stability program.		
traction of the	motor vehicle.	Discuss this					
under the follo	wing headings	:	1.2.1				
1.2.3 Throttl	e control		Throttle control could be via an actuator which wil				
			simply move the accelerator cable to prevent whe				
			spin. If the vehicle uses a drive by wire system, th				
			wheel spin will be controlled in conjunction with th				
			U U		stem. This throttle control		
1.2.2 Ignition	control		act indep	endent from th	e drivers pedal position. T		
			throttle control method can be slow sometimes.				
			1.2.2 With ignition control, ignition timing will be				
			retarded to prevent wheel spin.				
					ort space of time. Throttle		
1.2.3 Braking effect			control and ignition timing can both control wheel				
				•	Inction with the ABS hydra		
			modulator wheel spin can be controlled.				
			1.2.3 In conjunction with the ABS hydraulic modu				
					olled by applying brake		
			pressure	to the wheel th	hat wants to spin.		

This happens without the driver touching the brak
pedal.

Grade 11	Term: 3 V	Veek No:	3	Class		
Topic: Syster •	Supplem	entary Sys	stems			
and Control •	Air bags					
Instruc	Instructions Answers/Record of work completed					
1. Air bags are	classified a	1.				
passive systems. E	xplain the	• Pa	assive safe	ty systems nee	d no intervention by drive	
difference between	an active a	activate.				
passive system.		• Active safety system needs to be activated by driver				
		passeng	er for exam	ple the safety b	pelt.	
2. Why is it imp		2.				
bag system is mon	itored in a	The air bag cannot be deployed to be tested; an air bag syst				
vehicle?			ds to be m	onitored for ma	lfunction.	
		3.				
3. Name any F	IVE compor		rbags			
of a basic air bag s	-	• VV	arning ligh			
		Passenger seat switches				
		Pyrotechnic inflator				
		J. J	niter			
			rash senso			
			ectronic co			
			assenger a	irbag off switch		
		4.				
4 Oive a brief	decoriation		U		nostly from nylon material	
air bag construction	1.		d air bags.			
	Passenger air bags are normally bigger in volume that					
	driver's side					
			•		nflate within milliseconds a	
		deflate ju	ist as rapid	ly to prevent inj	ury	

5. Why are seat switches u	5. A seat switch is necessary so that are bag will not de
for the passenger seats of a m	nobody is sin the passenger seat.
vehicle?	6.
6. Name TWO types of cra	Mechanical type crash sensor
switches that can be used.	Electronic type crash sensor

Grade 11	Term: 3	Week No:	4	Class		
Topic:	Engine lubric	ation				
Maintenance	Oil Pumps					
	Instruction	S		Answers/Reco	rd of work completed	
1. Identify	the oil pump be	elow:	1.			
			Gear type oil pump			
	gate this type of					
determine if th	ere is any wea	r.				
3. Identify	the type of oil p	oump below	r: 	er record finding	gs: 	
4. Describ pump.	be the operation	n of this type				

4.
• The pump consists of an inner and outer ro
• As the inner rotor rotate it turns the outer ro
the same direction.
• Where the space between the inner and out
rotor enlarges oil is sucked in and as the rotor rot
and space becomes smaller oil is carried betweer
inner and outer rotor to the outlet
Pressure is repeated at each point of the re

ACTIVITY 9)
------------	---

Grade 11	Term: 3	Week No:	4	Class			
Topic: Maintenance	Engine lubric Oil filter syste Oil control me	ems					
	Instruction	S		Answers/Reco	ord of work completed		
1. Describ	be the difference	e between a	1. F	ull –flow syste	m		
flow system a	nd a by-pass sy	vstem.	• 0	il is pumped thr	rough the filter before mov		
			through	main oil channe	el to various components		
			By-pass	system			
			• N	ot all oil passing	g through filter to main oil		
			channel	and various cor	mponents, but eventually		
2. Investigate where the following			will pass through the filter				
components are found on the engines in y			2. Learner record findings below:				
workshop.							
2.1 Oil pump			2.1				
2.2 Oil pressu	re relief valve						
3. Explain	the function of	the oil pres	s				
relief valve.			2.2				
			3.	.			
				•	increases oil pressure		
				•	e is not controlled, it could		
					pressure that the engine c		
			not hand	lle and cylinders	s could be flooded with oil		
				he relief valve w	vill control pressure during		
			speeds				

Grade 11	Term: 3 Week No:	5	Class	
Topic:	Vehicle servicing			
Maintenance				
	Instructions		Answers/Reco	rd of work completed
1. Vehicle	s must be regularly service	1. L	earners will rec	cord their research belo
perform to its	optimum.	1.1 Vehi	cle 1	
Learners to ch	noose any TWO makes of v			
and do resear	ch on the routine work that			
agents will car	rry out on during a major se	el		
				·
		1.2 Vehi	cle 2	
				·

	Α	C	ΤI	V	IT	Y	11	
--	---	---	----	---	----	---	----	--

Grad	le 11		Term: 3	Week No:	6 - 7	Class					
Topi	c: Force	Work	ork, Power and Torque								
	Instruct	ions		Answers/Record of work completed							
1.	Define th	he	1.								
follov	ving terms	and									
the u	nit of mea	surer									
1.1	Work		1.1 Wor	k is done w	hen a forc	e of 1 Newton is	s expended through a dist				
			of 1 met	er in the di	rection of fo	orce. One joule	of work would have been				
1.2	Power		accomplished. Unit is J and 1 joule is equal to 1 N.m								
			1.2								
			• ls	s the rate or	r speed at v	which work is ac	ccomplished within a unit				
			time. Th	e unit of tim	ne is secon	d. Unit is watt o	r kW.				
			Power ()	$P) = \frac{force(1)}{2}$	N) x distance time (s)	<u>e (m)</u>					
			Power (]	$P) = \frac{work(x)}{\text{time (s)}}$	<u>/)</u> 3)						
1.3	Torque		1 W = 1	J/s = 1 N.ı	m/s						
			1.3								
			• T	orque (T) is	s the mome	ent of force at a	certain distance around a				
			certain p	point and is	measured	in N.m. $T = F$	- x R				

Grade 1	Term: 3 Week 1 7 Class							
Topic: Force Com	pression ratio							
Instructions	Answers/Record of work completed							
1. Define the	1.							
following terms:								
1.1 Compression	1.1							
	Compression ratio is swept volume plus the combustion chamber volur							
	divide by the combustion chamber volume.							
	$Copression ratio = \frac{swept \text{ volume} + combustion chamber volume}{combustion chamber volume}$							
1.2 Swept volum	1.2							
	Swept volume is the volume displaced by the piston from bottom dead							
1.3 Clearance vo	centre to top dead centre.							
or combustion cham	1.3							
volume	Volume of the combustion chamber measured in cm ³							
2. Do measuren								
of Stroke length an	2. Learners calculation inserted here:							
Cylinder bore in an	L =							
engine in the works	B =							
and calculate the	SV =							
Compression Ratio								
calculating the Swep								
Volume. You can us	CV =							
water in a pipette to								
measure the Cleara	CR =							
Volume.								

TERM 4

Grade 11	Term: 4	erm: 4 Week 1-2 Class						
Topic: Terminology	Workshop A	rkshop Administration						
Learner:	 Comp 	lete work sh	neet below					
Learner Name:		Learner: Surname:						
Instruction	S	Answers/Record of work completed						
5. Draw a worksho layout fo general garage	pp F pra a	Reception A and Cashier /ehicle Lifts Shop, Cloak	earner must include areas such as: eception Area, Waiting Room, Managers Office, Accountants nd Cashiers offices, Service Section Major Repairs area, ehicle Lifts, Electrical Repair area, Spares section, Machine hop, Cloak Rooms, Toilets, Workshop Staffroom, Washing ay, Parking Area, etc.					