

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATION/ NATIONAL SENIOR CERTIFICATE EXAMINATION

MECHANICAL TECHNOLOGY: AUTOMOTIVE

2021

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 20 pages.

Copyright reserved

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	B✓	(1)
1.2	A✓	(1)
1.3	C✓	(1)
1.4	C✓	(1)
1.5	D✓	(1)
1.6	A✓	(1) [6]

(3)

(2)

(1)

QUESTION 2: SAFETY (GENERIC)

2.1 **First aid basic treatment:**

- Examination ✓
- Diagnosis ✓
- Treatment ✓

2.2 Drill press (Already been switched on):

- Never leave the drill unattended while in motion. \checkmark
- Switch off the drill when leaving. ✓
- Use a brush or wooden rod to remove chips. ✓
- When reaching around a revolving drill, be careful that your clothes do not get caught in the drill or drill chuck. ✓
- Don't stop a revolving chuck with your hand. \checkmark
- Don't adjust the drill while working. ✓
- Don't open any guard while in motion. ✓
- Keep hands away from action points. ✓
- Do not force the drill bit into the material. \checkmark
- Apply cutting fluid if required. ✓

2.3 **Isolation of electrode holder:**

To prevent electric shock. ✓

2.4 **Disadvantages of the process layout:**

- Production is not always continuous. ✓
- Transportation costs between process departments may be high.
- Additional time is spent in testing and sorting as the product moves to the different departments. ✓
- Damage to fragile goods may result from extra handling. ✓
- (Any 2 x 1) (2)

(Any 2 x 1)

2.5 Advantages of the product layout:

- Handling of material is limited to a minimum. ✓
- Time period of manufacturing cycle is less. ✓
- Production control is almost automatic. ✓
- Control over operations is easier. \checkmark
- Greater use of unskilled labour is possible. ✓
- Less total inspection is required. \checkmark
- Less total floor space is needed per unit of production. \checkmark

(Any 2 x 1)

(2) **[10]**

DBE/2021

(Any 3 x 1)

(Any 1 x 1)

(3)

(3)

(1)

(3)

QUESTION 3: MATERIALS (GENERIC)

3.1 Heat-treatment:

- Heat the metal slowly to a certain temperature. ✓
- Soak the metal for a <u>certain period to ensure a uniform temperature</u>. ✓
- Cool the metal at a certain rate to room temperature. ✓

3.2 **Quenching mediums:**

- Water ✓
- Brine ✓
- Liquid salts ✓
- Oil ✓
- Soluble oil and water ✓
- Sand ✓
- Molten lead ✓
- Air ✓
- Lime ✓

3.3 Annealing:

- To relieve internal stresses of the steel ✓
- Soften steel to make machining possible ✓
- Make steel ductile ✓
- Refine grain structure ✓
- Reduce brittleness ✓

3.4 **Carbon steels:**

- Low carbon steel ✓
- Medium carbon steel ✓
- High carbon steel ✓

3.5 **Iron-carbon equilibrium diagram:**

- A Percentage carbon / carbon content ✓
- B Temperature in °C ✓
- C AC3 line / Higher critical temperature ✓
- D AC1 line / Lower critical temperature ✓

(4) **[14]**

DBE/2021

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	C✓	(1)
4.2	C✓	(1)
4.3	D✓	(1)
4.4	B✓	(1)
4.5	C✓	(1)
4.6	C✓	(1)
4.7	B✓	(1)
4.8	A✓	(1)
4.9	C✓	(1)
4.10	A✓	(1)
4.11	A✓	(1)
4.12	D✓	(1)
4.13	C ✓	(1)
4.14	D✓	(1)

5.1 **Compression tester labels:**

- A Pressure <u>gauge</u>/Pressure <u>meter</u> ✓
- B Pressure <u>release</u> valve ✓
- C Air hose/Pipe/Flexible pipe \checkmark
- D Spark plug connector/Adapter ✓
- 5.2 **Function of Cylinder Leakage Tester:**
 - To check where the combustion chamber/cylinder leaks gases ✓ during compression stroke/power stroke. ✓

6 SC/NSC – Marking Guidelines

- To determine the percentage ✓ pressure loss ✓ from the combustion chamber.
- 5.3 **Cylinder leakage test procedure:**
 - Turn the crank shaft until both valves, on the cylinder to be tested, are closed. ✓
 - Remove the HT leads / spark plugs ✓
 - Connect the spark plug adaptor (tester) to the spark plug hole. ✓
 - Lock the crankshaft pulley so that it cannot turn. ✓
 - Couple the compressed air pipe to the tester and calibrate the tester. \checkmark
 - Couple the spark plug adapter hose to the cylinder leakage tester. ✓
 - Note the results and location of gas leakage occurring in the combustion chamber. \checkmark

5.4 **Exhaust gas analyser:**

- Hydrocarbon (fuel and oil vapour) / HC \checkmark
- Carbon dioxide / $CO_2 \checkmark$
- Sulphur dioxide / SO₂ \checkmark
- 5.5 **Exhaust gas analysis test precautions:**
 - Always calibrate the exhaust gas analyser with the pick-up hose removed. \checkmark
 - The pick-up hose must not be stepped on or restricted in any way. \checkmark
 - The pick-up hose connections must be airtight. ✓
 - The vehicle being tested should have no leaks in the exhaust, manifolds or vacuum systems. ✓
 - Must be conducted in a well-ventilated area. ✓
 - Take good care when handling the equipment. ✓

5.6 **Function of Turn-tables:**

To make it possible \checkmark to turn the front wheels in and out / side to side \checkmark when checking the wheel alignment angles.

5.7 **Use of optical alignment gauge:**

To measure / check the toe-in and toe-out of the vehicle. \checkmark

DBE/2021

(4)

(2)

(6)

(Any 1 x 2)

(Any 6 x 1)

(Any 3 x 1)

Please turn over

(Any 2 x 1) (2)

ו

(2)

(1)

(3)

5.8 **Functions of OBD scanner:**

- Scan for faults (diagnostics). ✓
- Programme the ECU. ✓
- Reset fault codes. ✓
- Programme the keys to vehicle's ignition system. \checkmark

(Any 3 x 1) (3)

[23]

QUESTION 6: ENGINES (SPECIFIC)

8 SC/NSC – Marking Guidelines

DBE/2021

6.1	 Correcting By fit By register By a 	ng static imbalance: tting balance mass pieces to the crank webs. ✓ emoving metal from the crank webs. ✓ rranging the crank pins of the crankshaft. ✓ (Any 2 x 1)	(2)
6.2	Cranksh	aft balancing:	
	6.2.1	Dynamic balancing: Balancing in all directions \checkmark while crankshaft is rotating. \checkmark	(2)
	6.2.2	Reciprocating mass: The mass of the pistons, gudgeon pins \checkmark and the upper third of the connecting rod. \checkmark	(2)
6.3	 Features to improve engine balance: Connecting rods and pistons are kept as light as possible / static balanced. ✓ Flywheel is carefully balanced. ✓ Counterweights on the crankshaft. ✓ The firing order is reconfigured. ✓ 		(4)
6.4	Types of Frictic Comb Rubb Inertia	f vibration dampers: on face-type ✓ bined rubber and friction disc ✓ er type ✓ a ring type ✓ (Any 2 x 1)	(2)
6.5	Different	types of cylinder arrangements:	
		 A Inline type / Straight arrangement ✓ B V-type ✓ C W-type / double-V type ✓ 	(3)

6.6 Three-cylinder inline engine:

Marking:

Labelling power impulse angle 120°. ✓ Drawing position of crankpins. ✓ Numbering of crankpins. ✓

6.7 Types of superchargers:

- Roots ✓ •
- Twin-screw ✓ •
- Centrifugal and ✓ .
- Vane ✓

6.8 Advantages of using a turbocharger:

- More power is obtained from an engine with the same engine capacity. \checkmark •
- A turbocharger is driven by the exhaust gases of the engine and • therefore there is no power loss. \checkmark
- It gives improved fuel consumption in proportion to engine capacity. •
- The effect of height above sea level on power is eliminated. \checkmark •
- Improve volumetric efficiency. ✓

6.9 **Turbocharger:**

- А Intercooler/air cooler ✓
- В Compressed air flow ✓
- С Turbine/Turbine housing/Turbocharger ✓
- D Exhaust gas flow/exhaust system/exhaust manifold ✓

(3)

(3)(Any 3 x 1)

(Any 3 x 1) (3)

[28]

(4)

DBE/2021

(2)

QUESTION 7: FORCES (SPECIFIC)

7.1 **Terms:**

7.1.1 **Power:**

Power is the rate \checkmark at which work is done. \checkmark

7.1.2 **Compression Ratio:**

It is the ratio between the total volume of a cylinder when the piston is at bottom dead centre (BDC) \checkmark to the volume in a cylinder when the piston is at top dead centre (TDC). \checkmark (2)

7.2 Calculation of compression ratio:

7.2.1 Swept volume:

Swept Volume =
$$\frac{\pi D^2}{4} \times L$$

= $\frac{\sqrt{4}}{4} \times 7,5$
SV = 288,63 cm³ \checkmark (3)

7.2.2 **Original clearance volume:**

$$CV = \frac{SV}{CR-1}$$

= $\frac{288,63}{9,5-1} \checkmark$
= $\frac{288,63}{8,5}$
CV = 33,96 cm³ \checkmark (3)

DBE/2021

7.2.3 New bore diameter:

Compression ratio =
$$\frac{SV + CV}{CV}$$

= $\frac{SV}{CV} + 1$
 $SV = CV(CR - 1) \checkmark$
 $= 33,96(10 - 1) \checkmark$
 $SV = 305,64 \text{ cm}^3 \checkmark$

$$SV = \frac{\pi D^2}{4} \times L$$

Diameter = $\sqrt{\frac{SV \times 4}{\pi \times L}}$ \checkmark
 $D = \sqrt{\frac{305,64 \times 4}{\pi \times 7,5}}$ \checkmark
 $D = 7,203 \text{ cm}$
 $D = 72,03 \text{ mm}$ \checkmark (6)

7.3 **Power calculations:**

7.3.1 Torque:

Torque = Force × Radius

7.3.2 Indicated power:

P = 900kPa = 900 × 10³ Pa
L = 86 mm =
$$\frac{86}{1000}$$
 = 0,086 m ✓

$$D = 84 \text{ mm}$$

$$= \frac{84}{1000} = 0,084 \text{ m} \checkmark$$

$$A = \frac{\pi \times D^2}{4}$$

$$= \frac{\pi \times 0,084^2}{4} \checkmark$$

 $= 5,54 \times 10^{-3} \, \text{m}^2 \, \checkmark$

 $A = \frac{\pi \times D^2}{4}$ $= \frac{\pi \times 84^2}{4} \checkmark$ $= 5541,77 \text{ mm}^2 \checkmark$ $= 5541,77 \times 10^{-6} \text{ m}^2 \checkmark$

N = 2000 r/min =
$$\frac{2000}{60 \times 2}$$
 \checkmark = 16,667 power stroke/sec \checkmark
n = 4 cylinders

OR

$$IP = PLANn$$

= (900×10³)×0,086×5541,77×10⁻⁶×16,667×4 ✓
= 28596 W
= 28,60 kW ✓

OR

N = 2000 r/min =
$$\frac{2000}{60}$$
 = 33,333 r/sec \checkmark
n = $\frac{4}{2}$ = 2 power strokes \checkmark

$$IP = PLANn$$
= (900 × 10³) × 0,086 × 5541,77 × 10⁻⁶ × 33,333 × 2 ✓
= 28600 W
= 28,60 kW ✓

Copyright reserved

(8)

7.3.3 Brake power:

Brake Power =
$$2\pi NT$$

= $2 \times \pi \times \frac{2000}{60} \times 105$ \checkmark
= $21.991,149 W \checkmark$
= $21,99 kW \checkmark$ (3)

7.3.4 Mechanical efficiency:

Mechanical efficiency =
$$\frac{BP}{IP} \times 100$$

= $\frac{21,99}{28,60} \times 100$ \checkmark
= 76,89 % \checkmark
(NO UNIT, NO MARK FOR FINAL ANSWER)

(2) **[32]** 8.2

8.3

SC/NSC – Marking Guidelines

QUESTION 8: MAINTENANCE (SPECIFIC)

8.1 **Cooling system pressure test:**

8.1.1	Repair or replace water hose or clamp. 🗸	(1)
8.1.2	Cylinder head gasket blown. / Cylinder head warped. 🗸	(1)
8.1.3	Replace Welch or core plug. ✓	(1)
8.1.4	Replace radiator cap with suitable replacement. 🗸	(1)
Functio Reg Allo The 	n of the radiator cap: gulates the pressure in the cooling system. ✓ ws coolant to return to the radiator from the expansion tank. ✓ radiator cap seals / close the cooling system. ✓ (Any 2 x 1)	(2)
Exhaus	t gas readings causes:	
8.3.1	 Possible causes of high carbon monoxide (CO) reading: Too rich mixture ✓ Ignition misfire ✓ Dirty or restricted air filter ✓ Improper operation of the fuel delivery system. ✓ Faulty thermostat / stuck in open position or coolant sensor ✓ Non-functioning PCV valve system ✓ Catalytic converter not working ✓ 	(2)
8.3.2	 Possible causes high nitrogen oxide (NO_x) reading: Lean fuel mixture ✓ Improper spark advance ✓ Malfunctioning EGR valve ✓ Malfunctioning catalytic converter ✓ 	(2)
8.3.3	 Possible causes high oxygen (O₂) reading: Too lean air-fuel ratio ✓ Ignition problems ✓ Vacuum leaks ✓ Malfunctioning catalytic converter ✓ 	

(Any 2 x 1) (2)

8.4 Safety requirements when setting up the oil tester:

- Ensure the tester can read the expected pressures of the engine. \checkmark •
- Clean the sender unit area before fitting the tester. \checkmark •
- Ensure that the rubber hoses of the tester are not perished. \checkmark •
- Keep the tester away from moving engine parts when conducting the • test.√

(Any 3 x 1) (3)

(Any 4 x 1)

(4)

8.5 Fuel-pressure test/manufacturers' specifications:

- Fuel pressure (suction) before the fuel pump. \checkmark •
- Fuel pump delivery pressure (after the fuel pump). \checkmark
- Fuel-line pressure at idle speed. ✓ ٠
- Fuel-line pressure at high revolutions. \checkmark •
- Fuel pressure in the common rail (at injectors). \checkmark •

8.6 **Compression test:**

8.6.1 High tension leads:

- The ignition system will be disabled. \checkmark
- Prevent electrical shock. ✓ •
- To have access to the spark plugs in order to remove them. \checkmark

(Any 1 x 1) (1)

8.6.2 Throttle valve fully open:

- To ensure maximum amount of air enters the cylinder. ✓
- To obtain a correct reading. ✓

(Any 1 x 1) (1)

8.6.3 **Recording the readings:**

- Compared to the specifications reading. \checkmark
- To note the differences in readings between the cylinders. \checkmark •

(Any 1 x 1) (1)

8.7 Increase in compression after wet test:

- Piston ring / Compression ring ✓ •
- Cylinder (sleeve / walls) ✓

(Any 1 x 1) (1)

[23]

QUESTION 9: SYSTEMS AND CONTROL (AUTOMATIC GEARBOX) (SPECIFIC)

9.1 **Differences between an automatic gearbox and a manual gearbox:**

- Manual clutch pedal operated. ✓
 Automatic no clutch pedal operated. ✓
- Manual Gears selected manually with gear lever.

 Automatic Gears selected automatically by the gearbox.
 Image: Automatic Automati

(Any 1 x 2) (2)

(Any 2 x 1)

(2)

(2)

9.2 **Function of torque converter:**

- Multiplies engine torque automatically according to road and engine speeds. ✓
- Transfers drive from the engine to the transmission. \checkmark
- Acts as a Flywheel to keep the engine turning during the idle strokes. \checkmark
- Slips during initial acceleration and while stopping to prevent stalling. ✓
- Dampens torsional vibrations of the engine. ✓
- Drives the Transmission oil pump. ✓

9.3 **Lockup clutch:**

To overcome slip \checkmark that occurs inside the torque converter. \checkmark

9.4 **Stall speed:**

- The condition when the impeller of a torque converter rotates at maximum speed \checkmark and the turbine is almost stationary. \checkmark
- When the pump has reached the highest velocity ✓ and the turbine is at stall (standing still). ✓
- When the vehicle is stationary ✓ just before it starts moving / while the engine is idling. ✓

(Any 1 x 2) (2)

9.5 Single epicyclic gear system:

9.5.1 **Epicyclic gear train:**

- A Sun gear ✓
- B Annulus / Ring gear ✓
- C Planet gear √
- D Planet carrier ✓

(4)

9.5.2 Advantages of an epicyclic gear train:

- The input shaft and output shaft have the same axis of rotation. ✓
- Load is distributed to several planetary gears. ✓
- Many transmission-ratio options from ONE or a combination of several gear trains. ✓
- Longer service life compared to traditional gearboxes for similar load. ✓
- Epicyclic gearbox has the ability to transmit higher torque. \checkmark
- It has less inertia. ✓
- Used to obtain higher gear ratios. ✓
- Compact in size.
- All the gears are constantly in mesh. \checkmark

(Any 2 x 1) (2)

9.6 **Function of the valve body:**

- It detects the load \checkmark and adjust the gear ratio according to the torque requirements. \checkmark
- It directs the oil pressure ✓ to the correct hydraulic actuator. ✓

(Any 1 x 2) (2)

9.7 **Methods of cooling the automatic transmission oil:**

- By using a special oil cooler alongside the engine cooling radiator \checkmark and circulating transmission fluid through it. \checkmark
- Circulating transmission fluid \checkmark through a radiator. \checkmark
- The transmission oil sump \checkmark is designed with fins to assist with cooling. \checkmark

(Any 1 x 2) (2)

[18]

It must be ...

10.1

SC/NSC - Marking Guidelines

DBE/2021

QUESTION 10: SYSTEMS AND CONTROL (AXLES, STEERING GEOMETRY AND ELECTRICITY) (SPECIFIC)

Requirements of a well-planned steering mechanism:

light and easy to control. ✓ • free from vibration and road shocks. ✓ • as direct as possible without needing too much driver attention or effort. \checkmark • self-centring. ✓ • able to operate without being unduly affected by the action of the . suspension or braking systems. ✓ (Any 3 x 1) (3) Wheel alignment angles: 10.2 10.2.1 Function of Positive camber: Less steering effort ✓ The vehicle mass being carried by the larger inner front wheel bearing. ✓ (Any 1 x 1) (1) Function of Ackermann's angle: 10.2.2 It allows for variable toe-out to the front wheels on turns. \checkmark (1) 10.3 Caster: 10.3.1 Wheel alignment angle: Negative ✓ caster ✓ angle (2) С 10.3.2 Negative caster angle purpose: Negative caster ensures easier turning \checkmark and provides better cornering to the vehicle. \checkmark (2) 10.3.3 Caster angle labels: A. King pin / Steering axis ✓ B. Perpendicular line ✓ D. Centre line of kingpin / Steering axis ✓ (3) 10.4 Engine management system: 10.4.1 Function of sensor: It detects the engine operating conditions. $\checkmark\checkmark$ It gives the input information to the ECU. \checkmark • (Any 1 x 2) (2) **Function of actuators:** 10.4.2 It gets the output information / signal from the ECU. 🗸 •

- It makes the necessary adjustments. $\checkmark\checkmark$
- (Any 1 x 2) (2)

18

10.5

(2)

(1)

(3)

(1)

19 SC/NSC – Marking Guidelines

Requirements to make the catalytic convertor function effectively:

The convertor working temperature must not exceed 600 °C. ✓ • Unleaded petrol must be used. ✓ • Prevent persistent misfire. ✓ • Prevent burnt engine oil from melting the ceramic monolith. \checkmark ٠ The lambda sensor must function properly. ✓ • (Any 2 x 1) 10.6 Lambda sensor: The lambda sensor is fitted on the exhaust system. \checkmark 10.7 Adaptive speed control: Maintain a speed as set by the driver. \checkmark ٠ Adapt the speed to maintain a safe distance from the vehicle in front. \checkmark • Provide a warning if there is a risk of a collision. \checkmark • Prevent driver fatigue. ✓ • Improve fuel economy. ✓ • • A constant controlled speed setting prevents speeding fines. \checkmark (Any 3 x 1) 10.8 Diode: 10.8.1 Diode ✓ 10.8.2 Function of the diode: The function of the diode is used to change alternating current ✓ into direct current. ✓ It allows the current flow in the circuit in one direction only \checkmark • and blocks it from flowing in the opposite direction. \checkmark

(Any 1 x 2) (2)

DBE/2021

10.9	Function of components in the alternator:		
	10.9.1	Rectifier: Converts alternating current (AC) to direct current (DC). \checkmark	(1)
	10.9.2	 Stator: To provide a core ✓ that concentrates the magnetic lines of force onto the stator windings. ✓ To provide a coil ✓ into which a voltage is induced which is used to charge the battery. ✓ Converts the rotating magnetic field ✓ to electric current to charge the battery. ✓ 	(2)
	10.9.3	 Provides a rotating ✓ electro-magnet. ✓ Induces an electric voltage ✓ into the stator windings. ✓ Fitted with slip rings ✓ to allow for a moving electrical connection. ✓ 	(2)
10.10	FunctionIt enIt allo	This of the check value in the electric fuel pump: sures the pressure in the fuel line is maintained. \checkmark hows the fuel to flow in one direction only from the fuel tank. \checkmark	(2) [32]

TOTAL: 200