

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY: FITTING AND MACHINING

NOVEMBER 2018

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 21 pages.

TOTAL QUESTION 1:

[6]

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	A✓	(1)
1.2	C✓	(1)
1.3	A✓	(1)
1.4	B✓	(1)
1.5	D✓	(1)
1.6	A✓	(1)

QUESTION 2: SAFETY (GENERIC)

2.1 Angle grinder: (Before using)

- The safety guard must be in place before starting. ✓
- Protective shields must be placed around the object being grinded to protect the people around. ✓
- Use the correct grinding disc for the job. ✓
- Make sure that there are no cracks in the disc before you start. ✓
- Protective clothing and eye protection are essential. ✓
- Check electrical outlets and cord/plugs for any damages. ✓
- Ensure that lockable switch is disengaged. ✓
- Ensure that the disc and the nut are well secured. ✓
- Ensure that the removable handle is secured. ✓

(Any 2 x 1) (2)

2.2 Welding goggles:

- To protect your eyes against sparks ✓
- To protect your eyes against heat ✓
- To be able to see where to weld ✓
- To protect your eyes from UV rays ✓

(Any 2 x 1) (2)

2.3 **PPE for Hydraulic Press:**

- Overall ✓
- Safety shoes / boots√
- Safety goggle ✓
- Leather gloves ✓
- Face shield ✓

(Any 2 x 1) (2)

2.4 Workshop layouts:

- Process layout ✓
- Product layout ✓

(2)

2.5 Employer's responsibility regarding first-aid:

- Provision of first-aid equipment ✓
- First aid training ✓
- First-aid services by qualified personnel ✓
- Any first aid procedures / treatment ✓
- Display first aid safety signs ✓
- First aid personnel must be identified by means of arm bands or relevant personal signage ✓

(Any 2 x 1) (2)

TOTAL QUESTION 2: [10]

QUESTION 3: MATERIALS (GENERIC)

3.1 **Bending test:**

- Ductility ✓✓
- Malleability ✓ ✓
- Brittleness ✓✓
- Flexibility ✓✓

(Any 1 x 2) (2)

3.2 **Heat-treatment:**

3.2.1 **Annealing:**

- To relieve internal stresses ✓
- To soften the steel ✓
- To make the steel ductile ✓
- To refine the grain structure of the steel ✓
- To reduce the brittleness of the steel ✓

(Any 2 x 1) (2)

3.2.2 Case hardening:

- To require a wear resistant surface ✓ and it must be tough enough internally ✓ at the core to withstand the applied loads.
- Hard case ✓ and tough core. ✓

(Any 1 x 2) (2)

3.3 **Tempering process:**

- To reduce ✓ the brittleness ✓ caused by the hardening process.
- Relieve ✓ strain ✓ caused during hardening process.
- Increase ✓ the toughness of the steel. ✓

(Any 1 x 2) (2)

3.4 Factors for heat-treatment processes:

- Heating temperature / Carbon content ✓
- Soaking (Time period at temperature) / Size of the work piece ✓
- Cooling rate / Quenching rate ✓

(3)

(3)

3.5 Hardening of steel:

- Steel is heated to 30 50°C above the higher critical temperature.
 (AC₃) ✓
- It is then kept at that temperature to ensure (soaking) that the whole structure is Austenite. ✓
- The steel is then rapidly cooled by quenching it in clean water, brine or oil. ✓

TOTAL QUESTION 3: [14]

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	C✓	(1)
4.2	A✓	(1)
4.3	D✓	(1)
4.4	A✓	(1)
4.5	B✓	(1)
4.6	A✓	(1)
4.7	B✓	(1)
4.8	B✓	(1)
4.9	D✓	(1)
4.10	C✓	(1)
4.11	B✓	(1)
4.12	D✓	(1)
4.13	D✓	(1)
4.14	C✓	(1)

TOTAL QUESTION 4: [14]

(2)

QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)

5.1 Advantages of using the tailstock to cut an external taper:

- Long an accurate taper can be cut. ✓
- The automatic feed can be used which result in a good finish. ✓

5.2 Calculate the compound slide set-over:

$$Tan \frac{\theta}{2} = \frac{D - d}{2L}$$

$$Tan \frac{\theta}{2} = \frac{60 - 28}{2 \times 85} \qquad \checkmark$$

$$= 0,188$$

$$\frac{\theta}{2} = 10,66 ^{\circ} \qquad \checkmark \checkmark$$

$$X = \frac{D - d}{2}$$

$$= \frac{60 - 28}{2}$$

$$= 16 \text{ mm}$$

$$Tan \frac{\theta}{2} = \frac{16}{85}$$

$$\frac{\theta}{2} = 10,66^{\circ}$$
(5)

5.3 Centre gauge:

- To measure the form and angle of the screw cutting tool angle while grinding the tool ✓
- To set the screw cutting tool square/perpendicular to the axis of the work piece ✓

5.4 **Parallel key:**

Length:

Length =
$$1,5 \times \text{diameter}$$
 \checkmark
= $1,5 \times 42$ \checkmark
= 63 mm \checkmark (3)

5.5 Advantages of up-cut milling:

- Deeper cuts can be made as the cutting pressure on the cutter is lower than down cut milling. ✓
- The process enables hard steel to be cut, because the total cutting pressure is absorbed by the material at the back of the edge. ✓
- Metal with hard scale, such as castings or forgings, the cut is started under the scale where the material is softer which extends the life of the cutter. ✓
- A quicker/course feed can be used. ✓
- The strain on the cutter and arbour will be less. ✓
- Vibration is limited ✓
- Good finish ✓
- Low noise level ✓

(Any 2 x 1) (2)

5.6 **Disadvantage of down-cut milling:**

- Vibration in the arbour is unavoidable. ✓
- A fine feed must be used. ✓
- When milling a material with hard scale the milling cutter will be damaged. ✓
- Process takes time because of slower feed. ✓
- Noisy process. ✓
- Bad finish because of vibration. ✓

(Any 2 x 1) (2)

5.7 Methods of centring a milling cutter:

- Square and ruler method. ✓
- Set-over method by milling machine dial. ✓
- Dial indicator method ✓
- Using reference points on digital read out equipment ✓

(Any 2 x 1) (2)

TOTAL QUESTION 5: [18]

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

6.1 **Spur gear:** Chordal tooth thickness:

$$t_{c} = Tmsin \frac{90^{\circ}}{T} \qquad \checkmark \qquad t_{c} = PCDsin \frac{90^{\circ}}{T} \qquad \checkmark$$

$$= 50 \times 3sin \frac{90^{\circ}}{50} \qquad \checkmark \qquad or \qquad = 150sin \frac{90^{\circ}}{50} \qquad \checkmark$$

$$= 50 \times 3(0,03141) \qquad \checkmark \qquad = 150 \times 0,03141 \qquad \checkmark$$

$$= 4,71 \text{ mm} \qquad = 4,71 \text{ mm} \qquad (4)$$

6.2 Calculate simple indexing:

Simple Indexing =
$$\frac{40}{N}$$

= $\frac{40}{13}$
= $3\frac{1}{13} \times \frac{3}{3}$
= $3\frac{3}{39}$

3 full turns and 3 holes in a 39 hole circle (4)

(5)

6.3 **Differential indexing:**

6.3.1 **Indexing required:**

Indexing
$$=\frac{40}{n} = \frac{40}{127}$$

 $=\frac{40}{A} = \frac{40}{125} \div \frac{5}{5}$
 $=\frac{8}{25}$

Indexing =8 holes on the 25 hole circle \checkmark (3)

6.3.2 Change gears required:

$$\frac{Dr}{Dn} = \frac{A - n}{A} \times \frac{40}{1}$$

$$= \frac{125 - 127}{125} \times \frac{40}{1}$$

$$= \frac{2}{125} \times \frac{40}{1}$$

$$= \frac{-80}{125} \div \frac{5}{5}$$

$$= \frac{-16}{25} \times \frac{4}{4}$$

$$= \frac{-64}{100}$$

6.3.3 **Direction of rotation of index plate:**

The index plate will turn the opposite ✓ direction as the index crank handle. (1)

6.4 Calculate distance "x" between rollers:

"x" =
$$150 + 2(AB) - 2(CD) - 2r$$

$$\tan \Phi = \frac{BC}{AB}$$

$$AB = \frac{BC}{\tan \Phi}$$

$$= \frac{35}{\tan 60^{\circ}}$$

$$= 20,207 \text{ mm}$$

$$= 20,21 \text{ mm}$$

"x"=
$$150+2(AB)-2(CD)-2r$$
 \checkmark
= $150+2(20,21)-2(25,98)-2(15)$
= $150+40,42-51,96-30$ \checkmark
= $108,454 \text{ mm}$
= $108,45 \text{ mm}$ \checkmark (9)

6.5 Reasons for balancing work piece on a centre lathe:

- Prevent unnecessary bearing loads ✓
- Prevent excessive vibration ✓
- To obtain a good finish ✓
- To prevent clatter on the gear teeth ✓
- To prevent the spindle from bending ✓

(Any 2 x 1) (2)

TOTAL QUESTION 6: [28]

QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

7.1 Hardness testers:

- Brinell-hardness tester ✓
- Rockwell-hardness tester ✓
- Vickers ✓

(Any 2 x 1) (2)

(3)

7.2 Moment tester:

To determine the reactions ✓ on either side of a simply loaded beam. ✓ (2)

7.3 **Tensile test:**

A piece of material is subjected to an increasing axial load ✓ while measuring ✓ the corresponding elongation ✓ of the material.

7.4 **Depth micro-meter:**

Reading =
$$100 + 11,00 + 0,50 + 0,09$$

= $111,59 \text{ mm}$ (5)

7.5 **Measure depth:**

Vernier calliper ✓ (1)

TOTAL QUESTION 7: [13]

QUESTION 8: FORCES (SPECIFIC)

8.1 Forces:

Horizontal components ✓	Magnitudes	Vertical components ✓	Magnitudes
1150	1150 N ✓	800Sin30°	400 N ✓
-800Cos30°	-692,82 N ✓	-650Sin20°	- 222,31 N ✓
-650Cos20°	-610,80 N ✓	-550	-550 N ✓
TOTAL	-153,62 N ✓	TOTAL	-372,31 N ✓

$$E^{2} = HC^{2} + VC^{2}$$

$$\sqrt{E^{2}} = \sqrt{153,62^{2} + 372,31^{2}}$$

$$E = 402,76N$$

$$Tan \theta = \frac{VC}{HC}$$

$$= \frac{372,31}{153,62}$$

$$\theta = 67.58^{\circ}$$

Equilibrant = 402,76 N en 67,58° North from East ✓

(15)

Horizontal Components ✓	Magnitudes	Vertical Components ✓	Magnitudes
1150cos0°	1150N ✓	1150sin0°	0N
800cos150°	-692,82N ✓	800sin150°	400N √
650cos200°	-610,80N √	650sin200°	-222,31N ✓
550cos270°	0N	550sin270°	-550N ✓
TOTAL:	-153,62N ✓	TOTAL:	-372,31N ✓

8.2 **Moments:**

Calculate "x":

Take moments about O.

8.3 **Stress and Strain:**

8.3.1 **Type of stress:**

Compressive stress ✓ (1)

8.3.2 **Stress**:

$$A = \frac{\mu(D^2 - d^2)}{4}$$

$$= \frac{\mu(0.04^2 - 0.03^2)}{4}$$

$$A = 0.55 \times 10^{-3} \text{ m}^2$$

$$b = \frac{F}{A}$$

$$= \frac{50 \times 10^{3}}{0.55 \times 10^{-3}}$$

$$b = 90.91 \times 10^{6} \text{ Pa}$$

$$b = 90.91 \text{ MPa}$$
✓

$$(NO UNIT - NO MARK) (5)$$

8.3.3 Change in length:

$$E = \frac{b}{\omega}$$

$$\omega = \frac{b}{E}$$

$$= \frac{90,91 \times 10^{6}}{90 \times 10^{9}}$$

$$= 1,01 \times 10^{-3}$$

(IF ANY UNIT IS GIVEN - NO MARK)

$$\overset{\checkmark}{\smile} \frac{\checkmark}{\smile}$$

$$\overset{\checkmark}{\smile} = \overset{\checkmark}{\smile}$$

$$= (1,01 \times 10^{-3}) \times (80)$$

$$= 0,08 \text{ mm}$$

$$\checkmark$$
(5)

8.3.4 **Safety factor:**

Safety factor =
$$\frac{\text{Break stress}}{\text{Safe working stress}}$$

Safe working stress = $\frac{\text{Break stress}}{\text{Safety factor}}$

= $\frac{600 \times 10^6}{4}$

= $150 \times 10^6 \, \text{Pa}$

= $150 \, \text{MPa}$

(3)

TOTAL QUESTION 8: [33]

QUESTION 9: MAINTENANCE (SPECIFIC)

9.1 Lack of preventative maintenance:

- Risk of injury or death. ✓
- Financial loss due to damage suffered as a result of part failure and the waste of material. ✓
- Loss of valuable production time. ✓

9.2 Causes for the malfunctioning of chain drive systems:

- Lack of or incorrect lubrication ✓
- Lack of maintenance ✓
- Overloading ✓
- Misalignment of sprockets ✓
- Incorrect chain tension ✓
- Contamination of chain drive system such as dust or sand ✓

(Any 2 x 1) (2)

(3)

9.3 Procedures to reduce the physical wear on a belt drive system:

- Check the belt alignment. ✓
- Checking the belt tension. ✓
- Prevent overloading of the system. ✓
- Keep the pulleys and belt clean. ✓
- Check that all covers are secure. ✓

(Any 2 x 1) (2)

9.4 Procedures to replace the belt on a belt drive system:

- Ensure that the machine is switched off ✓
- Release the tension on the belt ✓
- Remove the belt from the pulleys ✓
- Fit the correct size replacement belt onto the pulleys ✓
- Check the pulley alignment ✓
- Apply adequate tension according to specification and lock the system ✓

(Any 5 x 1) (5)

9.5 **Properties of materials:**

9.5.1 **Poly vinyl chloride (PVC):**

- Flexible ✓
- Rubber-like substance ✓
- Makes a dull sound when dropped ✓
- Tough ✓
- Act as an insulator ✓
- It is durable ✓
- Highly resistant to oxidative material ✓
- Oil, water and chemical resistant ✓

(Any 1 x 1) (1)

9.5.2 Carbon fibre:

- Strong ✓
- Tough ✓
- Light weight ✓
- Good electrical conductor ✓

(Any 1 x 1) (1)

9.6 Difference between "Thermoplastic" and "Thermo hardened (thermosetting)" composites:

Thermoplastics can be reheated and deformed. / Recyclable ✓
Thermo hardened cannot be reheated. / Non-recyclable ✓ (2)

9.7 Examples of thermo hardened composites:

- Carbon fibre or (Any application) ✓
- Glass fibre or (Any application) ✓
- Bakelite or (Any application) ✓
- Teflon or (Any application) ✓

(Any 2 x 1) (2)

TOTAL QUESTION 9: [18]

QUESTION 10: JOINING METHODS (SPECIFIC)

10.1 **Square thread:**

10.1.1 The lead of the thread:

10.1.2 The helix angle of the thread:

Helix angle tanΦ=
$$\frac{\text{lead}}{\text{pitch cercumfrence}}$$

$$= \frac{10}{\text{E} \times \left(\text{outside dia} - \frac{1}{2} \text{pitch}\right)} \checkmark$$

$$= \frac{10}{\text{E} \times \left(82 - 2.5\right)}$$

$$= 0.0400$$

$$Φ= 2.29° / 2°17'24"$$

OR

Helix angle tan
$$\Phi = \frac{\text{lead}}{\text{pitch diameter}}$$

$$= \frac{10}{82 - 2.5}$$

$$\Phi = 7.17^{\circ} / 7^{\circ} 10' 12'' \qquad \checkmark \tag{5}$$

10.1.3 The leading tool angle:

Leading tool angle =
$$90^{\circ}$$
 – (helix angle + clearance angle) \checkmark
= 90° – (2,29° + 3°)
= $84,71^{\circ}/84^{\circ}42'36"$

OR

Leading tool angle =
$$90^{\circ}$$
 – (helix angle + clearance angle) \checkmark
= 90° – $(7,17^{\circ}+3^{\circ})$
= $79,83^{\circ}/79^{\circ}49'48''$ \checkmark (2)

10.1.4 The following tool angle:

Following toolangle =
$$90^{\circ}$$
 + (helix angle – clearance angle) \checkmark
= 90° + (2,29° – 3°)
= $89,29^{\circ}/89^{\circ}17'24"$

OR

Following toolangle =
$$90^{\circ}$$
 + (helix angle – clearance angle) \checkmark
= 90° + (7,17° – 3°)
= $94,17^{\circ}$ / $94^{\circ}10'12"$ \checkmark (2)

10.2 Measurements of a screw thread :

10.3 Angles of a square thread cutting tool:

A – Helix angle ✓

B – Clearance angle ✓

C – Leading tool angle ✓

D – Following tool angle ✓

TOTAL QUESTION 10: [18]

(4)

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 Advantages of a belt drive system compared to a chain drive system:

- Silent operation ✓
- Less expensive ✓
- Drive can take place over a longer distance ✓
- No lubrication needed ✓

(Any 2 x 1) (2)

11.2 **Hydraulics:**

11.2.1 Fluid pressure:

$$A_{A} = \frac{E_{A}^{2}}{4}$$

$$= \frac{E(0,032)^{2}}{4}$$

$$= 0.8 \times 10^{-3} \text{ m}^{2}$$

$$P = \frac{F_{A}}{A_{A}}$$

$$= \frac{120}{0.8 \times 10^{-3}}$$

$$= 0.1492 \times 10^{6} \text{ Pa}$$

$$= 0.15 \text{ MPa or } 149207,76 \text{ Pa}$$
(NO UNIT – NO MARK)

11.2.2 **Diameter of the ram:**

$$p = \frac{F_{A}}{A_{A}} \qquad \checkmark \qquad \frac{F_{B}}{A_{B}} = \frac{F_{A}}{A_{A}} \qquad \checkmark$$

$$A_{B} = \frac{F_{B}}{p} \qquad OR \qquad A_{B} = \frac{A_{A} \times F_{B}}{F_{A}}$$

$$= \frac{18 \times 10^{3}}{0.15 \times 10^{6}} \qquad \checkmark \qquad = \frac{\left(0.8 \times 10^{-3}\right) \times \left(18 \times 10^{3}\right)}{120} \qquad \checkmark$$

$$= 0.12 \text{ m}^{2} \qquad \checkmark \qquad = 0,12 \text{ m}^{2} \qquad \checkmark$$

$$A_{B} = \frac{\frac{1}{4}}{4}$$

$$A_{B} = \sqrt{\frac{4A}{E}}$$

$$A_{B} = \sqrt{\frac{4A}{E}$$

11.3 Hydraulic symbols: One-way valve

(1)

11.4 Belt drives:

Rotation frequency of the drive pulley:

$$N_{DR}D_{DR} = N_{DN}D_{DN} \qquad \checkmark$$

$$N_{DR} = \frac{N_{DN} \times D_{DN}}{D_{DR}} \qquad \checkmark$$

$$= \frac{80 \times 240}{75} \qquad \checkmark$$

$$= 256 \text{ r/min} \qquad \checkmark$$
(4)

11.5 **Gear drives:**

11.5.1 Rotation frequency of the output:

$$\begin{split} \frac{N_A}{N_D} &= \frac{Product \ of \ Driven \ gears}{Product \ of \ Driver \ gears} \\ \frac{N_D}{N_A} &= \frac{T_A \times T_C}{T_B \times T_D} \\ N_D &= \frac{T_A \times T_C \times N_A}{T_B \times T_D} \\ &= \frac{20 \times 25 \times 3000}{35 \times 30} \\ N_D &= \frac{1428,57 \ r/min}{60} \\ &= 23,81 \ r/sec \end{split}$$

OR

$$N_{D} \times T_{D} = N_{C} \times T_{C}$$

$$N_{D} = \frac{N_{C} \times T_{C}}{T_{D}}$$

$$= \frac{1714,29 \times 25}{30}$$

$$= \frac{1428,57 \text{ r/min}}{60}$$

$$= 23,81 \text{ r/sec}$$

 $N_{\rm B} = N_{\rm C} = 1714,29 \, \text{r/min}$

 $N_{B} = \frac{N_{A} \times T_{A}}{T_{B}}$ $= \frac{3000 \times 20}{35}$ = 1714,29 r/min

 $N_{R} \times T_{R} = N_{\Delta} \times T_{\Delta}$

Copyright reserved

(6)

11.5.2 **Gear ratio**:

Gear ratio =
$$\frac{\text{Product of the number of teeth on driven gears}}{\text{Product of the number of teeth on driver gears}} \checkmark$$

$$= \frac{35}{20} \times \frac{30}{25}$$

$$= 2,1:1$$
 \checkmark (3)

11.6 Work done:

Work done =
$$F \times s$$

= 250×15
= 3750 Joule or N.m \checkmark (2)

TOTAL QUESTION 11: [28]

TOTAL: 200